Combustión sin llama como una alternativa para mejorar la eficiencia de sistemas térmicos: revisión del estado del arte

Palabras clave: Combustión sin llama, combustión diluida, interacción turbulencia/ química, emisiones contaminantes, combustibles alternativos

Resumen

El aumento de la demanda energética, así como de las emisiones contaminantes ha generado un incremento de la investigación de tecnologías que permitan mitigar ambas problemáticas a nivel mundial. Dentro de las alternativas para mejorar la eficiencia de los procesos térmicos, el régimen de combustión sin llama se presenta como una de las alternativas más promisorias, puesto que permite obtener altos valores del rendimiento térmico mediante el mejoramiento de la transferencia de calor y del proceso de combustión, con la consiguiente reducción de las emisiones contaminantes. Debido a esto, en el presente estudio se realiza una revisión del estado del arte de dicha tecnología, haciendo énfasis en los aspectos fenomenológicos asociados, las principales características del régimen y su estabilidad, pasando por los mecanismos de obtención y la presentación de una serie de estudios, tanto a nivel nacional como internacional, en los que se utilizaron combustibles fósiles y alternativos. La revisión finaliza con la discusión de algunos casos en los cuales se ha implementado el régimen a nivel industrial.

Biografía del autor/a

Hernando A. Yepes , Universidad Francisco de Paula Santander, Colombia

MSc. en Ingeniería, Grupo de investigación en ingenierías aplicadas para la innovación, la gestión y el desarrollo (INGAP), Departamento de ingeniería mecánica, Universidad Francisco de Paula Santander, Ocaña– Colombia, hayepest@ufpso.edu.co

Carlos E. Arrieta , Universidad de Medellín, Colombia

PhD en Ingeniería Ambiental, Grupo de investigación en energía, Facultad de Ingeniería, Universidad de Medellín, Medellín- Colombia, carrieta@udem.edu.co

Andrés A. Amell*, Universidad de Antioquia, Colombia

MSc. en Economía de la energía, Grupo de ciencia y Tecnología del Gas y Uso Racional de la Energía (GASURE), Facultad de ingeniería, Universidad de Antioquia, Medellín-Colombia, andres.amell@udea.edu.co

Referencias bibliográficas

International Energy Agency World Energy Outlook 2016. Washington: U.S. Department of Energy, 2016.

M. Höök and X. Tang, “Depletion of fossil fuels and anthropogenic climate change—A review,” Energy Policy, vol. 52, pp. 797–809, Jan. 2013.

https://doi.org/10.1016/j.enpol.2012.10.046

J. Dignon, “NOx and SOx emissions from fossil fuels: A global distribution,” Atmos. Environ. Part A. Gen. Top., vol. 26, no. 6, pp. 1157–1163, Apr. 1992. https://doi.org/10.1016/0960-1686(92)90047-O

A. Shahsavari and M. Akbari, “Potential of solar energy in developing countries for reducing energy-related emissions,” Renew. Sustain. Energy Rev., vol. 90, pp. 275–291, Jul. 2018. https://doi.org/10.1016/j.rser.2018.03.065

E. A. Abdelaziz, R. Saidur, and S. Mekhilef, “A review on energy saving strategies in industrial sector,” Renew. Sustain. Energy Rev., vol. 15, no. 1, pp. 150–168, Jan. 2011. https://doi.org/10.1016/j.rser.2010.09.003

H. Dunkelberg et al., “Optimization of the energy supply in the plastics industry to reduce the primary energy demand,” J. Clean. Prod., vol. 192, pp. 790–800, Aug. 2018. https://doi.org/10.1016/j.jclepro.2018.04.254

S. Zhou, Y. Wang, Z. Yuan, and X. Ou, “Peak energy consumption and CO2 emissions in China’s industrial sector,” Energy Strateg. Rev., vol. 20, pp. 113–123, Apr. 2018. https://doi.org/10.1016/J.ESR.2018.02.001

F. Rehermann and M. Pablo-Romero, “Economic growth and transport energy consumption in the Latin American and Caribbean countries,” Energy Policy, vol. 122, pp. 518–527, Nov. 2018. https://doi.org/10.1016/J.ENPOL.2018.08.006

G. G. Szegö, B.B.Dally, and G.J.Nathan, “Operational characteristics of a parallel jet MILD combustion burner system,” Combust. Flame, vol. 156, no. 2, pp. 429–438, Feb. 2009. https://doi.org/10.1016/j.combustflame.2008.08.009

M. de Joannon, G. Sorrentino, and A. Cavaliere, “MILD combustion in diffusion-controlled regimes of Hot Diluted Fuel,” Combust. Flame, vol. 159, no. 5, pp. 1832–1839, May 2012. https://doi.org/10.1016/j.combustflame.2012.01.013

J. Wünning, J.G. Wünning, “Flameless oxidation to reduce thermal no-formation,” Prog. Energy Combust. Sci., vol. 23, no. 1, pp. 81–94, 1997. https://doi.org/10.1016/S0360-1285(97)00006-3

J. G. Wünning, “What is Flameless Combustion ?,” 171, 2002. https://es.scribd.com/document/102717534/Flameless-Combustion

A. Cavaliere, M. de Joannon, and R. Ragucci, “Highly Preheated Lean Combustion,” in Lean Combustion, Burlington: Elsevier, 2008. pp. 55–94. https://doi.org/10.1016/B978-012370619-5.50004-2,

A. Cavaliere and M. de Joannon, “Mild Combustion,” Prog. Energy Combust. Sci., vol. 30, no. 4, pp. 329–366, Jan. 2004. https://doi.org/10.1016/j.pecs.2004.02.003

A. F. Colorado, B. A. Herrera, and A. A. Amell, “Performance of a Flameless combustion furnace using biogas and natural gas,” Bioresour. Technol., vol. 101, no. 7, pp. 2443–2449, Apr. 2010.

https://doi.org/10.1016/j.biortech.2009.11.003

M. de Joannon, A. Cavaliere, T. Faravelli, E. Ranzi, P. Sabia, and A. Tregrossi, “Analysis of process parameters for steady operations in methane mild combustion technology,” Proc. Combust. Inst., vol. 30, no. 2, pp. 2605–2612, Jan. 2005. https://doi.org/10.1016/j.proci.2004.08.190

A. Effuggi, D. Gelosa, M. Derudi, and R. Rota, “Mild Combustion of Methane-Derived Fuel Mixtures: Natural Gas and Biogas,” Combust. Sci. Technol., vol. 180, no. 3, pp. 481–493, Jan. 2008.

https://doi.org/10.1080/00102200701741368

F. Delacroix, “The Flameless Oxidation Mode: An Efficient Combustion Device Leading also to very Low NOX Emission Levels,” 2004. https://docplayer.net/1076237-The-flameless-oxidation-mode-an-efficient-combustion-device-leading-also-to-very-low-nox-emission-levels.html

F. Wang, P. Li, Z. Mei, J. Zhang, and J. Mi, “Combustion of CH4/O2/N2 in a well stirred reactor,” Energy, vol. 72, pp. 242–253, Aug. 2014. https://doi.org/10.1016/j.energy.2014.05.029

B. Herrera, “Desarrollo y Evaluación de una Cámara de Combustión sin Llama,” Thesis. Universidad de Antioquia, 2009.

T. Hasegawa and R. Tanaka, “High Temperature Air Combustion. Revolution in Combustion Technology. (Part I New Findings on High Temperature Air Combutions.),” JSME Int. J. Ser. B, vol. 41, no. 4, pp. 1079–1084, 1998. https://doi.org/10.1299/jsmeb.41.1079.

M. Derudi, A. Villani, and R. Rota, “Sustainability of mild combustion of hydrogen-containing hybrid fuels,” Proc. Combust. Inst., vol. 31, no. 2, pp. 3393–3400, Jan. 2007. https://doi.org/10.1016/j.proci.2006.08.107

O. Piepers, P. P. Breithaupt, and A. B. N. van Beelen, “Stability of Flames Close to Auto-Ignition Temperatures Generated by Extreme Separated Gas-Air Inlets,” J. Energy Resour. Technol., vol. 123, no. 1, pp. 50–58, Mar. 2000. https://doi.org/10.1115/1.1345731

C. Galletti, A. Parente, and L. Tognotti, “Numerical and experimental investigation of a mild combustion burner,” Combust. Flame, vol. 151, no. 4, pp. 649–664, Dec. 2007

https://doi.org/10.1016/j.combustflame.2007.07.016

Y. Weihong and B. Wlodzimierz, “CFD as applied to high temperature air combustion in industrial furnaces,” Ind. Combust. J. Int. Flame Res. Found. J., vol. 03, no. 200603, pp. 1–22, Nov. 2006.

https://www.osti.gov/etdeweb/biblio/21396638

M. M. Noor, A. P. Wandel, and T. Yusaf, “A review of MILD combustion and open furnace design consideration,” Int. J. Automot. Mech. Eng., vol. 6, no. 1, pp. 730–754, Dec. 2012.

https://doi.org/10.15282/ijame.6.2012.6.0060

D. Lupant and P. Lybaert, “Assessment of the EDC combustion model in MILD conditions with in-furnace experimental data,” Appl. Therm. Eng., vol. 75, pp. 93–102, Jan. 2015.

https://doi.org/10.1016/j.applthermaleng.2014.10.027

C. Galletti, A. Parente, M. Derudi, R. Rota, and L. Tognotti, “Numerical and experimental analysis of NO emissions from a lab-scale burner fed with hydrogen-enriched fuels and operating in MILD combustion,” Int. J. Hydrogen Energy, vol. 34, no. 19, pp. 8339–8351, Oct. 2009. https://doi.org/10.1016/j.ijhydene.2009.07.095

A. Parente, C. Galletti, and L. Tognotti, “Effect of the combustion model and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels,” Int. J. Hydrogen Energy, vol. 33, no. 24, pp. 7553–7564, Dec. 2008. https://doi.org/10.1016/j.ijhydene.2008.09.058

A. S. Veríssimo, A. M. A. Rocha, and M. Costa, “Experimental study on the influence of the thermal input on the reaction zone under flameless oxidation conditions,” Fuel Process. Technol., vol. 106, pp. 423–428, Feb. 2013. https://doi.org/10.1016/j.fuproc.2012.09.008.

H. Tsuji, A. K. Gupta, T. Hasegawa, M. Katsuki, K. Kishimoto, and M. Morita, “Combustion Phenomena of High Temperature Air Combustion,” in High Temperature Air Combustion, CRC Press, 2002. p. 142.

https://doi.org/10.1201/9781420041033

A. K. Gupta, “Thermal Characteristics of Gaseous Fuel Flames Using High Temperature Air,” J. Eng. Gas Turbines Power, vol. 126, no. 1, pp. 9–19, Jan. 2003. https://doi.org/10.1115/1.1610009

M. Sánchez, F. Cadavid, and A. Amell, “Experimental evaluation of a 20kW oxygen enhanced self-regenerative burner operated in flameless combustion mode,” Appl. Energy, vol. 111, pp. 240–246, Nov. 2013. https://doi.org/10.1016/j.apenergy.2013.05.009

A. F. C. Granda, “Evaluacion Numerica y Experimental De Un Horno De Combustion Sin Llama Utilizando Combustibles Gaseosos De Bajo Poder Calorifico,” Universidad de Antioquia, 2009.

R. Weber, A. LVerlaan, S. Orsino, and N. Lallemant, “On Emerging Furnace Design Methodology that Provides Substantial Energy Savings and Drastic Reductions in CO2, CO and NOx Emissions.,” J. Inst. Energy, vol. 72, no. 492, pp. 77--83, 1999. https://www.semanticscholar.org/paper/On-emerging-furnace-design-methodology-that-energy-Weber-Lverlaan/9725194dd976f85f16316e46631a4ee91a16f095

B. A. H. Múnera, A. A. A. Arrieta, and F. J. C. Sierra, “Modelos para el estudio fenomenológico de la combustión sin llama con simulación numérica,” Ing. e Investig., vol. 29, no. 2, pp. 70–76, Aug. 2009.

A. F. Colorado and M. A. Sanchez, “Diseño, Construcción y Evaluación de un Prototipo para la Obtención del Fenómeno de Combustión sin Llama Usando Viciado Externo,”Tesis. Universidad de Antioquia, 2007.

N. Rafidi and W. Blasiak, “Heat transfer characteristics of HiTAC heating furnace using regenerative burners,” Appl. Therm. Eng., vol. 26, no. 16, pp. 2027–2034, Nov. 2006. https://doi.org/10.1016/j.applthermaleng.2005.12.016

International Flame research foundation, “How is a flameless combustion system started up from a cold state ?,” IFRF Handbook. 2003. https://ifrf.net/ifrf-blog/ifrf-handbook/

A. Milani and J. G. Wünning, “How do I achieve flameless combustion in practice ?,” 2003. https://ifrf.net/ifrf-blog/ifrf-handbook/

E.-S. Cho, B. Danon, W. de Jong, and D. J. E. M. Roekaerts, “Behavior of a 300kWth regenerative multi-burner flameless oxidation furnace,” Appl. Energy, vol. 88, no. 12, pp. 4952–4959, Dec. 2011.

https://doi.org/10.1016/j.apenergy.2011.06.039

W. Yang and W. Blasiak, “Numerical simulation of properties of a LPG flame with high-temperature air,” Int. J. Therm. Sci., vol. 44, no. 10, pp. 973–985, Oct. 2005. https://doi.org/10.1016/j.ijthermalsci.2005.03.001

A. Amell et al., “Horno de combustión sin llama de alta eficiencia energética,” Universidad de Antioquia, Colombia, 2009. http://catalogo.colciencias.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=15138

C. Sepúlveda and A. A. Amell, “Desarrollo y evaluación de un quemador auto regenerativo para la combustión sin llama del gas natural,” Tesis Doctoral, facultad de ingeniería, Universidad de Antioquia, 2009.

A. A. Amell, B. A. Herrera, C. Sepúlveda, and F. J. Cadavid, “Metodología para el Desarrollo de Sistemas de Combustión Sin Llama,” Inf. tecnológica, vol. 21, no. 1, pp. 17–22, 2010. https://doi.org/10.4067/S0718-07642010000100004

F. Cadavid, A. Amell, M. Sanchez, and J. C. Lezcano, “Informe final del proyecto: Desarrollo y evaluación de un quemador de combustión sin llama a gas natural usando aire enrriquecido con oxigeno,” 2011. http://www.udea.edu.co/wps/portal/udea/web/generales/interna/!ut/p/z0/fY5NC8IwDIb_yjx47pzix3EMEcSTgmgvEtswozOZbSfu39upF0G85XkTnrxKq53SDHcqIZAwVJH3enyYzopskI_S1WK9LNJ8XOTzyWa7yqaZWir9_yAa6Hy76VxpIxzwEdSuFhegaixCPwX_TSe54nsmvqMPsYuhnhn2jkPup6VravGJxeTXlrhEJnRdABaSNgloWCopP0kUgG8cdo9ebZis-I5slIGBF1XECL6tnbRognhVX_T-CWxG2KQ!/

N. Krishnamurthy, P. J. Paul, and W. Blasiak, “Studies on low-intensity oxy-fuel burner,” Proc. Combust. Inst., vol. 32, no. 2, pp. 3139–3146, 2009. https://doi.org/10.1016/j.proci.2008.08.011

K. A. Khazaei, A. A. Hamidi, and M. Rahimi, “Numerical Investigation of Fuel Dilution Effects on the Performance of the Conventional and the Highly Preheated and Diluted Air Combustion Furnaces,” Chinese J. Chem. Eng., vol. 17, no. 5, pp. 711–726, Oct. 2009. https://doi.org/10.1016/S1004-9541(08)60267-0

B. Danon, E.-S. Cho, W. de Jong, and D. J. E. M. Roekaerts, “Parametric optimization study of a multi-burner flameless combustion furnace,” Appl. Therm. Eng., vol. 31, no. 14–15, pp. 3000–3008, Oct. 2011.

https://doi.org/10.1016/j.applthermaleng.2011.05.033

B. Danon, E.-S. Cho, W. de Jong, and D. J. E. M. Roekaerts, “Numerical investigation of burner positioning effects in a multi-burner flameless combustion furnace,” Appl. Therm. Eng., vol. 31, no. 17–18, pp. 3885–3896, Dec. 2011. https://doi.org/10.1016/j.applthermaleng.2011.07.036

J. Mi, P. Li, B. B. Dally, and R. A. Craig, “Importance of Initial Momentum Rate and Air-Fuel Premixing on Moderate or Intense Low Oxygen Dilution (MILD) Combustion in a Recuperative Furnace,” Energy & Fuels, vol. 23, no. 11, pp. 5349–5356, Oct. 2009. https://doi.org/10.1021/ef900866v

P. Li, J. Mi, B. B. Dally, R. A. Craig, and F. Wang, “Premixed Moderate or Intense Low-Oxygen Dilution (MILD) Combustion from a Single Jet Burner in a Laboratory-Scale Furnace,” Energy & Fuels, vol. 25, no. 7, pp. 2782–2793, May. 2011. https://doi.org/10.1021/ef200208d

P. Li, F. Wang, J. Mi, B. B. Dally, and Z. Mei, “MILD Combustion under Different Premixing Patterns and Characteristics of the Reaction Regime,” Energy & Fuels, vol. 28, no. 3, pp. 2211–2226, Mar. 2014. https://doi.org/10.1021/ef402357t

Y. Tu, H. Liu, S. Chen, Z. Liu, H. Zhao, and C. Zheng, “Effects of furnace chamber shape on the MILD combustion of natural gas,” Appl. Therm. Eng., vol. 76, no. 0, pp. 64–75, Feb. 2015.

https://doi.org/10.1016/j.applthermaleng.2014.11.007

F. Hu et al., “Optimal Equivalence Ratio to Minimize NO Emission during Moderate or Intense Low-Oxygen Dilution Combustion,” Energy & Fuels, vol. 32, no. 4, pp. 4478–4492, Apr. 2018.

https://doi.org/10.1021/acs.energyfuels.7b03162

Y. Tu, M. Xu, D. Zhou, Q. Wang, W. Yang, and H. Liu, “CFD and kinetic modelling study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O atmospheres,” Appl. Energy, vol. 240, pp. 1003–1013, Apr. 2019. https://doi.org/10.1016/j.apenergy.2019.02.046

Y. Xie, Y. Tu, H. Jin, C. Luan, Z. Wang, and H. Liu, “Numerical study on a novel burner designed to improve MILD combustion behaviors at the oxygen enriched condition,” Appl. Therm. Eng., vol. 152, pp. 686–696, Apr. 2019. https://doi.org/10.1016/J.APPLTHERMALENG.2019.02.023

N. A. K. Doan and N. Swaminathan, “Autoignition and flame propagation in non-premixed MILD combustion,” Combust. Flame, vol. 201, pp. 234–243, Mar. 2019. https://doi.org/10.1016/j.combustflame.2018.12.025

T. Ishii, C. Zhang, and Y. Hino, “Numerical study of the performance of a regenerative furnace,” Heat Transf. Eng., vol. 23, no. 4, pp. 23–33, 2002. https://doi.org/10.1080/01457630290090473

D. Cecere, E. Giacomazzi, F. R. Picchia, and N. Arcidiacono, “Unsteady analysis of hydrogen/air mild combustion by means of Large Eddy simulation,” 6th Int. Conf. Heat Transf. Fluid Mech. Thermodyn., 2008. https://repository.up.ac.za/handle/2263/40176

A. Mardani and S. Tabejamaat, “Effect of hydrogen on hydrogen–methane turbulent non-premixed flame under MILD condition,” Int. J. Hydrogen Energy, vol. 35, no. 20, pp. 11324–11331, Oct. 2010. https://doi.org/10.1016/j.ijhydene.2010.06.064

A. Mardani, S. Tabejamaat, and S. Hassanpour, “Numerical study of CO and CO2 formation in CH4/H2 blended flame under MILD condition,” Combust. Flame, vol. 160, no. 9, pp. 1636–1649, Sep. 2013. https://doi.org/10.1016/j.combustflame.2013.04.003

P. Sabia, M. de Joannon, S. Fierro, A. Tregrossi, and A. Cavaliere, “Hydrogen-enriched methane Mild Combustion in a well stirred reactor,” Exp. Therm. Fluid Sci., vol. 31, no. 5, pp. 469–475, Apr. 2007. https://doi.org/10.1016/j.expthermflusci.2006.04.016

Y. Yu, W. Gaofeng, L. Qizhao, M. Chengbiao, and X. Xianjun, “Flameless combustion for hydrogen containing fuels,” Int. J. Hydrogen Energy, vol. 35, no. 7, pp. 2694–2697, Apr. 2010. https://doi.org/10.1016/j.ijhydene.2009.04.036

S. Chen and C. Zheng, “Counterflow diffusion flame of hydrogen-enriched biogas under MILD oxy-fuel condition,” Int. J. Hydrogen Energy, vol. 36, no. 23, pp. 15403–15413, Nov. 2011.

https://doi.org/10.1016/j.ijhydene.2011.09.002

M. Ayoub, C. Rottier, S. Carpentier, C. Villermaux, A. M. Boukhalfa, and D. Honoré, “An experimental study of mild flameless combustion of methane/hydrogen mixtures,” Int. J. Hydrogen Energy, vol. 37, no. 8, pp. 6912–6921, Apr. 2012. https://doi.org/10.1016/j.ijhydene.2012.01.018

A. Sepman, E. Abtahizadeh, A. Mokhov, J. van Oijen, H. Levinsky, and P. de Goey, “Experimental and numerical studies of the effects of hydrogen addition on the structure of a laminar methane–nitrogen jet in hot coflow under MILD conditions,” Int. J. Hydrogen Energy, vol. 38, no. 31, pp. 13802–13811, Oct. 2013.

https://doi.org/10.1016/j.ijhydene.2013.08.015

C. Galletti, M. Ferrarotti, A. Parente, and L. Tognotti, “Reduced NO formation models for CFD simulations of MILD combustion,” Int. J. Hydrogen Energy, vol. 40, no. 14, pp. 4884–4897, Apr. 2015.

https://doi.org/10.1016/j.ijhydene.2015.01.172

S. R. Shabanian, M. Derudi, M. Rahimi, A. Frassoldati, A. Cuoci, and T. Faravelli, “Experimental and numerical analysis of syngas mild combustion,” in XXXIV Meeting of the Italian Section of the Combustion Institute, 2011. pp. 1–7. https://doi.org/10.4405/34proci2011.II18,

A. Frassoldati, T. Faravelli, and E. Ranzi, “The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds,” Int. J. Hydrogen Energy, vol. 32, no. 15, pp. 3471–3485, Oct. 2007. https://doi.org/10.1016/j.ijhydene.2007.01.011

M. Huang et al., “Effect of fuel injection velocity on MILD combustion of syngas in axially-staged combustor,” Appl. Therm. Eng., vol. 66, no. 1–2, pp. 485–492, May 2014. https://doi.org/10.1016/j.applthermaleng.2014.02.033

M. Huang et al., “Coal-derived syngas MILD combustion in parallel jet forward flow combustor,” Appl. Therm. Eng., vol. 71, no. 1, pp. 161–168, Oct. 2014. https://doi.org/10.1016/j.applthermaleng.2014.06.044

M. Huang et al., “Effect of air preheat temperature on the MILD combustion of syngas,” Energy Convers. Manag., vol. 86, pp. 356–364, Oct. 2014. https://doi.org/10.1016/j.enconman.2014.05.038

A. Salavati-Zadeh, V. Esfahanian, S. B. Nourani Najafi, H. Saeed, and M. Mohammadi, “Kinetic simulation of flameless burners with methane/hydrogen blended fuel: Effects of molecular diffusion and Schmidt number,” Int. J. Hydrogen Energy, vol. 43, no. 11, pp. 5972–5983, Mar. 2018. https://doi.org/10.1016/j.ijhydene.2017.11.149

A. Mardani and H. K. Motaalegh Mahalegi, “Hydrogen enrichment of methane and syngas for MILD combustion,” Int. J. Hydrogen Energy, vol. 44, no. 18, pp. 9423–9437, Apr. 2019. https://doi.org/10.1016/j.ijhydene.2019.02.072

B. Magnussen, “On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow,” in 19th Aerospace Sciences Meeting, 1981. pp. 1–6.

https://doi.org/10.2514/6.1981-42

J. Aminian, C. Galletti, and L. Tognotti, “Extended EDC local extinction model accounting finite-rate chemistry for MILD combustion,” Fuel, vol. 165, pp. 123–133, Feb. 2016. https://doi.org/10.1016/j.fuel.2015.10.041

A. Parente, M. R. Malik, F. Contino, A. Cuoci, and B. B. Dally, “Extension of the Eddy Dissipation Concept for turbulence/chemistry interactions to MILD combustion,” Fuel, vol. 163, pp. 98–111, Jan. 2016. https://doi.org/10.1016/j.fuel.2015.09.020

A. Mardani, “Optimization of the Eddy Dissipation Concept (EDC) model for turbulence-chemistry interactions under hot diluted combustion of CH4/H2,” Fuel, vol. 191, pp. 114–129, Mar. 2017.

https://doi.org/10.1016/j.fuel.2016.11.056

M. Farokhi and M. Birouk, “A new EDC approach for modeling turbulence/chemistry interaction of the gas-phase of biomass combustion,” Fuel, vol. 220, pp. 420–436, May 2018. https://doi.org/10.1016/j.fuel.2018.01.125

M. Farokhi and M. Birouk, “Modeling of the gas-phase combustion of a grate-firing biomass furnace using an extended approach of Eddy Dissipation Concept,” Fuel, vol. 227, pp. 412–423, Sep. 2018.

https://doi.org/10.1016/J.FUEL.2018.04.102

M. J. Evans, C. Petre, P. R. Medwell, and A. Parente, “Generalisation of the eddy-dissipation concept for jet flames with low turbulence and low Damköhler number,” Proc. Combust. Inst., vol. 37, no. 4, pp. 4497–4505, 2019. https://doi.org/10.1016/j.proci.2018.06.017

F. Chitgarha and A. Mardani, “Assessment of steady and unsteady flamelet models for MILD combustion modeling,” Int. J. Hydrogen Energy, vol. 43, no. 32, pp. 15551–15563, Aug. 2018. https://doi.org/10.1016/j.ijhydene.2018.06.071

R. K. Shah, T. Mikus, and P. K. Shankar, “Flameless combustor process heater,” US7025940B2, 2006.

J. G. Wunning and J. A. Wunning, “Combustion chamber with flameless oxidation,” US7062917B2, Jun-2006.

K. Taekyu et al., “Flameless combustion burner,” US8915731, 2014. https://patents.google.com/patent/US8915731B2/en

M. Cornwell, N. Overman, and E. Gutmark, “Flameless combustion systems for gas turbine engines,” US8667800B2, Mar-2017.

Gasure Grupo de ciencia y Tecnología del Gas y uso racional de la energía, “Horno de Combustión Sin Llama con Quemador Autoregenerativo para Recuperación de Calor,” 2010.

http://gasure.udea.edu.co/es/content/horno-de-combusti%C3%B3n-sin-llama-con-quemador-autoregenerativo-para-recuperaci%C3%B3n-de-calor

G. Schwarz and B. Köster, A. Giese, U. Konold, Al. Halbouni, K. G. Görner, “Application of Flameless Oxidation in Glass Melting Furnaces,” in 7th International Symposium on High Temperature Air Combustion and Gasification, 2008, no. HiTACG.

https://www.uni-due.de/imperia/md/content/luat/publikationen/2008-01-13_hitacg_gwi-drh.pdf

A. Amell, L. Rubio, Y. Cadavid, and C. Echeverri, “Informe final del proyecto: Análisis de las necesidades tecnológicas para la mitigación del cambio climático en el sector industrial colombiano,” Ministerio de Medio Ambiente y Desarrollo Sostenible, 2013. https://unfccc.int/ttclear/misc_/StaticFiles/gnwoerk_static/TNR_CRE/a167c50350ed4352abadca67a30bf27e/5bcad8992bc447e788960e36ef9baef6.pdf

C. Duwig, D. Stankovic, L. Fuchs, G. Li, and E. Gutmark, “Experimental and Numerical Study of Flameless Combustion in a Model Gas Turbine Combustor,” Combust. Sci. Technol., vol. 180, no. 2, pp. 279–295, Dec. 2007. https://doi.org/10.1080/00102200701739164

M. D. Cornwell, N. R. Overman, and E. Gutmark, “Flameless combustion systems for gas turbine engines,” US8667800B2, 2014.

J. Wünning, “Flameless combustion and its applications,” 14th IFRF Members Conf. Noordwijkerhout, pp. 1–12, 2006.

Cómo citar
[1]
H. A. Yepes, C. E. Arrieta, y A. A. Amell, «Combustión sin llama como una alternativa para mejorar la eficiencia de sistemas térmicos: revisión del estado del arte», TecnoL., vol. 22, n.º 46, pp. 115–154, sep. 2019.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2019-09-20
Sección
Artículos de revisión

Métricas