Gestión óptima del mantenimiento de la vegetación y los costos asociados de implementación en sistemas aéreos de distribución

Palabras clave: Sistema de distribución, tasa de falla, tasa de crecimiento, nivel de energía no servida, mantenimiento de la vegetación

Resumen

Los operadores de red están constantemente trabajando en mantener un nivel de confiabilidad apropiado en el suministro de energía y preservar la integridad de la vegetación que crece bajo las redes aéreas de distribución de energía. Por tal razón, en este artículo se proponen e implementan diferentes alternativas para gestionar de manera óptima el mantenimiento de la vegetación. El problema se representa a través de modelamiento matemático, en función de varios aspectos enmarcados en el manejo de la flora, basados en la capacidad técnica de la empresa y las metas de confiabilidad estipuladas por los organismos gubernamentales. En la solución del problema, se obtiene un programa de mantenimiento de la vegetación en términos de cuándo y dónde se debe realizar este, además de la asignación de los grupos de trabajo destinados para las labores de poda a lo largo del sistema de distribución. De esta manera, se minimiza el nivel de energía no servida y se optimizan los recursos financieros necesarios para este tipo de tareas.

Biografía del autor/a

Johan S. Correa-Tamayo, Project engineer. GERS S.A, Colombia

MSc in Electrical Engineering, Project engineer. GERS S.A, Cali-Colombia, johan.correa@gers.com.co

Andrés Arias Londoño, *, Universidad Tecnológica de Pereira, Colombia
PhD in Engineering, Program of Electrical Engineering, Technological University of Pereira, Pereira Colombia, andresarias@utp.edu.co
*Autor de correspondencia
Mauricio Granada-Echeverri, Universidad Tecnológica de Pereira, Colombia

PhD in Electrical Engineering, Program of Electrical Engineering, Technological University of Pereira, Pereira-Colombia, magra@utp.edu.co

Referencias bibliográficas

F. Costa and H. Rodrigues, “Adequação da Arborização Urbana em Redes de Distribuição um Estudo de Caso na Cidade de Cachoeira Dourada – MG,” in National Seminar Distribution of Electrical Energy, Belo Horizonte, Brasil, 2006, 2006, p. 12.

J. Goodfellow, “Investigating tree-caused faults,” in Transmission & Distribution World, 2005.

A. Muir and J. Lopatto, “Final report on the August 14, 2003 blackout in the United States and Canada : causes and recommendations,” Canadá, 2004.

Institucionais Diretoria de comunicação empresariale reoes, “Norma Técnica Meio Ambiente Planejamento e Controle da Arborização na Coexistência com o Sistema Elétrico.” pp. 1–19, 2003.

J. W. Goodfellow, “Understanding How Trees Cause Interruptions,” in 82nd Conference of International Society of Arboriculture, Minneapolis, MN, 2004.

W. R. Lovelace, “Vegetation Management on Distribution Line Right-of-Way Are You Getting Top Value for Your Money?,” in Proceedings of Rural Electric Power Conference, 1996. pp. B5-1 https://doi.org/10.1109/REPCON.1996.495241.

P. A. Kuntz, R. D. Christie, and S. S. Venkata, “A reliability centered optimal visual inspection model for distribution feeders,” IEEE Trans. Power Deliv., vol. 16, no. 4, pp. 718–723, Oct. 2001. https://doi.org/10.1109/61.956761.

A. Crespo et al., “Criticality Analysis for improving maintenance, felling and pruning cycles in power lines,” IFAC-PapersOnLine, vol. 51, no. 11, pp. 211–216, 2018. https://doi.org/10.1016/j.ifacol.2018.08.262.

T. Wu et al., “Insulation property of wire-plane gap under fire condition: Effects of vegetation flame conductivity,” in 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Sep. 2015. https://doi.org/10.1109/DRPT.2015.7432498, pp. 1600–1605.

J. Ahmad, A. Saeed Malik, and L. Xia, “Effective techniques for vegetation monitoring of transmission lines right-of-ways,” in 2011 IEEE International Conference on Imaging Systems and Techniques, 2011. https://doi.org/10.1109/IST.2011.5962216, pp. 34–38.

J. Ahmad, A. S. Malik, and L. Xia, “Vegetation monitoring for high-voltage transmission line corridors using satellite stereo images,” in 2011 National Postgraduate Conference, 2011. https://doi.org/10.1109/NatPC.2011.6136337, pp. 1–5.

J. I. Larrauri, G. Sorrosal, and M. Gonzalez, “Automatic system for overhead power line inspection using an Unmanned Aerial Vehicle — RELIFO project,” in 2013 International Conference on Unmanned Aircraft Systems (ICUAS), 2013. https://doi.org/10.1109/ICUAS.2013.6564696, pp. 244–252.

L. Matikainen et al., “Remote sensing methods for power line corridor surveys,” ISPRS J. Photogramm. Remote Sens., vol. 119, pp. 10–31, Sep. 2016. https://doi.org/10.1016/j.isprsjprs.2016.04.011.

D. Long, P. J. Rehm, and S. Ferguson, “Benefits and challenges of using unmanned aerial systems in the monitoring of electrical distribution systems,” Electr. J., vol. 31, no. 2, pp. 26–32, Mar. 2018. https://doi.org/10.1016/j.tej.2018.02.004.

L. Hame, J. Norppa, P. Salovaara, and J. Pylvanainen, “Power line monitoring using optical satellite data,” in CIRED Workshop 2016, 2016. https://doi.org/10.1049/cp.2016.0741, p. 141 (4 .)-141 (4 .).

D. T. Radmer, P. A. Kuntz, R. D. Christie, S. S. Venkata, and R. H. Fletcher, “Predicting vegetation-related failure rates for overhead distribution feeders,” IEEE Trans. Power Deliv., vol. 17, no. 4, pp. 1170–1175, Oct. 2002. https://doi.org/10.1109/TPWRD.2002.804006.

P. A. Kuntz, R. D. Christie, and S. S. Venkata, “Optimal vegetation maintenance scheduling of overhead electric power distribution systems,” IEEE Trans. Power Deliv., vol. 17, no. 4, pp. 1164–1169, Oct. 2002. https://doi.org/10.1109/TPWRD.2002.804007.

J. F. B. Filho, L. C. Siebert, V. C. Mariani, and L. dos Santos Coelho, “A Conceptual Model of a Stereo Vision System to Aid a Teleoperated Robot in Pruning Vegetation Close to Overhead Urban Power Lines,” in 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2018. https://doi.org/10.1109/SPEEDAM.2018.8445341, pp. 1119–1124.

L. A. Arias, R. A. Hincapie, and E. M. Granada, “Integrated methodology between metaheuristic techniques for optimal vegetation maintenance in distribution systems,” in 2014 IEEE PES T&D Conference and Exposition, 2014. https://doi.org/10.1109/TDC.2014.6863386, pp. 1–5.

A. Arias, R. A. Hincapie, M. Granada, and R. A. Gallego, “Optimal scheduling of vegetation maintenance underneath overhead power distribution lines,” in 2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA), 2012. https://doi.org/10.1109/TDC-LA.2012.6319097, pp. 1–6.

H. Ghasemabadi and A. Peiravi, “Overhead lines maintenance scheduling in power distribution system considering feeders ranking,” in 2016 24th Iranian Conference on Electrical Engineering (ICEE), 2016. https://doi.org/10.1109/IranianCEE.2016.7585516, pp. 193–198.

NEPLAN, “Reliability analysis,” 2019.

L. Thurner, Structural Optimizations in Strategic Medium Voltage Power System Planning, vol. 4. kassel university press GmbH, 2018. https://doi.org/10.19211/KUP9783737605397.

A.-L. Andrés, H.-I. Ricardo Alberto, and G.-E. Mauricio, “Programación óptima del mantenimiento de la vegetación bajo redes aéreas de distribución usando una técnica de optimización multiobjetivo,” Ing. Investig. y Tecnol., vol. 15, no. 1, pp. 139–150, Jan. 2014. https://doi.org/10.1016/S1405-7743(15)30012-3.

Cómo citar
[1]
J. S. Correa-Tamayo, A. Arias Londoño, y M. Granada-Echeverri, «Gestión óptima del mantenimiento de la vegetación y los costos asociados de implementación en sistemas aéreos de distribución», TecnoL., vol. 22, n.º 45, pp. 91–107, may 2019.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2019-05-15
Sección
Artículos de investigación

Métricas