Desmezclado espectral en percepción remota hiperespectral: una herramienta para el mapeo de palma aceitera

Palabras clave: Hiperespectral, Variabilidad Espectral, Desmezclado, Firmas Puras, Abundancias, Palma de Aceite

Resumen

Las plantaciones de palma de aceite típicamente abarcan grandes áreas, por esto, la teledetección remota se ha convertido en una herramienta útil para el monitoreo avanzado de este cultivo. Este trabajo revisa y evalúa dos enfoques para analizar las plantaciones de palma de aceite a partir de datos de teledetección remota hiperespectral: desmezclado espectral lineal y variabilidad espectral. Además, se propone un marco computacional basado en el desmezclado espectral para la estimación de las fracciones de abundancias de cultivos de palma de aceite. Este enfoque también considera la variabilidad espectral de las firmas en las imágenes hiperespectrales. El marco computacional propuesto modifica el modelo de mezcla lineal mediante la introducción de un vector de pesos, de manera que se puedan identificar las bandas espectrales que menos contribuyen a la estimación de fracciones de abundancias erróneas. Este enfoque aprovecha la detección de los árboles de palma de aceite, ya que permite diferenciarlos de otros materiales en términos de fracciones de abundancia. Los resultados experimentales obtenidos a partir de datos de teledetección remota hiperespectral en el rango de 410-990 nm, muestran mejoras de un 8.18 % en la métrica de Precisión del Usuario (Uacc) en la identificación de palmas de aceite por el marco propuesto con respecto a los métodos tradicionales de desmezclado espectral; el método propuesto logró un 95 % de Uacc. Esto confirma las capacidades del marco computacional formulado y facilita la gestión y el monitoreo de grandes áreas de plantaciones de palma de aceite.

Biografía del autor/a

Hector Vargas, Universidad Industrial de Santander, Colombia

MSc en Ingeniería Electrónica, Departamento de Ingeniería Electrónica, Universidad Industrial de Santander, Bucaramanga, Colombia, hector.vargas@correo.uis.edu.co   

Ariolfo Camacho Velasco, Universidad Industrial de Santander,Colombia

MSc en Ingeniería de Sistemas e Informática, Departamento de Ingeniería de Sistemas, Universidad Industrial de Santander, Bucaramanga, Colombia, ariolfo.camacho@correo.uis.edu.co 

Henry Arguello, *, Universidad Industrial de Santander

PhD en Ingeniería Eléctrica y Computación, Departamento de Ingeniería de Sistemas, Universidad Industrial de Santander, Bucaramanga, Colombia, henarfu@uis.edu.co
*Autor de correspondencia.

Referencias bibliográficas

“El sector palmero se ha consolidado en Colombia como un gremio responsable,” in El palmicultor, 2019, pp. 6–7.

A. Drenth, G. A. Torres, and G. M. López, “Phytophthora palmivora, la causa de la Pudrición del cogollo en la palma de aceite,” Rev. Palmas, vol. 34, no. 1, pp. 87–94, Jan. 2013.

L. F. Gómez, “Actualícese: todo lo que debe saber acerca de la PC--Hoja clorótica en Zona Norte,” Fedepalma, vol. 540, pp. 17–19, Feb. 2017.

P. S. Thenkabail, I. Mariotto, M. K. Gumma, E. M. Middleton, D. R. Landis, and K. F. Huemmrich, “Selection of Hyperspectral Narrowbands (HNBs) and Composition of Hyperspectral Twoband Vegetation Indices (HVIs) for Biophysical Characterization and Discrimination of Crop Types Using Field Reflectance and Hyperion/EO-1 Data,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 6, no. 2, pp. 427–439, Apr. 2013. https://doi.org/10.1109/JSTARS.2013.2252601.

P. Ghamisi et al., “Advances in Hyperspectral Image and Signal Processing: A Comprehensive Overview of the State of the Art,” IEEE Geosci. Remote Sens. Mag., vol. 5, no. 4, pp. 37–78, Dec. 2017. https://doi.org/10.1109/MGRS.2017.2762087.

M. Teke, H. S. Deveci, O. Haliloglu, S. Z. Gurbuz, and U. Sakarya, “A short survey of hyperspectral remote sensing applications in agriculture,” in 2013 6th International Conference on Recent Advances in Space Technologies (RAST), 2013. pp. 171–176. https://doi.org/10.1109/RAST.2013.6581194.

K. Jusoff and M. Pathan, “Mapping of Individual Oil Palm Trees Using Airborne Hyperspectral Sensing: An Overview,” Appl. Phys. Res., vol. 1, no. 1, p. 15, Apr. 2009. https://doi.org/10.5539/apr.v1n1p15.

H. Z. M. Shafri, M. I. Anuar, I. A. Seman, and N. M. Noor, “Spectral discrimination of healthy and Ganoderma -infected oil palms from hyperspectral data,” Int. J. Remote Sens., vol. 32, no. 22, pp. 7111–7129, Nov. 2011. https://doi.org/10.1080/01431161.2010.519003.

M. A. Izzuddin, A. S. Idris, N. M. Nisfariza, and B. Ezzati, “Spectral based analysis of airborne hyperspectral remote sensing image for detection of ganoderma disease in oil palm,” in Proceedings of Conference on Biological and Environmental Science (BIOES 2015), Phuket. 2015. pp. 13–20.

C. C. Lelong et al., “Evaluation of Oil-Palm Fungal Disease Infestation with Canopy Hyperspectral Reflectance Data,” Sensors, vol. 10, no. 1, pp. 734–747, Jan. 2010. https://doi.org/10.3390/s100100734.

J. M. Bioucas-Dias et al., “Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 5, no. 2, pp. 354–379, Apr. 2012. https://doi.org/10.1109/JSTARS.2012.2194696.

B. Somers, G. P. Asner, L. Tits, and P. Coppin, “Endmember variability in Spectral Mixture Analysis: A review,” Remote Sens. Environ., vol. 115, no. 7, pp. 1603–1616, Jul. 2011. https://doi.org/10.1016/j.rse.2011.03.003.

A. Zare and K. C. Ho, “Endmember Variability in Hyperspectral Analysis: Addressing Spectral Variability During Spectral Unmixing,” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 95–104, Jan. 2014. https://doi.org/10.1109/MSP.2013.2279177.

A. Halimi, P. Honeine, and J. M. Bioucas-Dias, “Hyperspectral Unmixing in Presence of Endmember Variability, Nonlinearity, or Mismodeling Effects,” IEEE Trans. Image Process., vol. 25, no. 10, pp. 4565–4579, Oct. 2016. https://doi.org/10.1109/TIP.2016.2590324.

T. Uezato, R. J. Murphy, A. Melkumyan, and A. Chlingaryan, “A Novel Spectral Unmixing Method Incorporating Spectral Variability Within Endmember Classes,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 5, pp. 2812–2831, May 2016. https://doi.org/10.1109/TGRS.2015.2506168.

P.-A. Thouvenin, N. Dobigeon, and J.-Y. Tourneret, “Hyperspectral Unmixing With Spectral Variability Using a Perturbed Linear Mixing Model,” IEEE Trans. Signal Process., vol. 64, no. 2, pp. 525–538, Jan. 2016. https://doi.org/10.1109/TSP.2015.2486746.

J. M. Bioucas-Dias and J. M. P. Nascimento, “Hyperspectral Subspace Identification,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp. 2435–2445, Aug. 2008. https://doi.org/10.1109/TGRS.2008.918089.

J. P. Kerekes and J. E. Baum, “Hyperspectral imaging system modeling,” Lincoln Lab. J., vol. 14, no. 1, pp. 117–130, Jan. 2003.

B. Rasti, M. O. Ulfarsson, and J. R. Sveinsson, “Hyperspectral Subspace Identification Using SURE,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 12, pp. 2481–2485, Dec. 2015. https://doi.org/10.1109/LGRS.2015.2485999.

M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Sparse Unmixing of Hyperspectral Data,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 2014–2039, Jun. 2011. https://doi.org/10.1109/TGRS.2010.2098413.

J. M. P. Nascimento and J. M. B. Dias, “Vertex component analysis: a fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898–910, Apr. 2005. https://doi.org/10.1109/TGRS.2005.844293.

J. M. Bioucas-Dias, “A variable splitting augmented Lagrangian approach to linear spectral unmixing,” in 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2009. pp. 1–4. https://doi.org/10.1109/WHISPERS.2009.5289072.

J. M. Bioucas-Dias and M. A. T. Figueiredo, “Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing,” in 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2010. vol. 1. https://doi.org/10.1109/WHISPERS.2010.5594963.

M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4484–4502, Nov. 2012. https://doi.org/10.1109/TGRS.2012.2191590.

C.-I. Chang and Q. Du, “Estimation of Number of Spectrally Distinct Signal Sources in Hyperspectral Imagery,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608–619, Mar. 2004. https://doi.org/10.1109/TGRS.2003.819189.

S. J. K. Pedersen, “Circular hough transform,” Aalborg Univ. Vision, Graph. Interact. Syst., vol. 123, no. 6, Nov. 2007.

Cómo citar
[1]
H. Vargas, A. Camacho Velasco, y H. Arguello, «Desmezclado espectral en percepción remota hiperespectral: una herramienta para el mapeo de palma aceitera», TecnoL., vol. 22, n.º 45, pp. 129–143, may 2019.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2019-05-15
Sección
Artículos de investigación

Métricas