Dependencia de la sensibilidad en un cristal fotónico unidimensional con el ángulo incidente de la radiación para la detección de célula cancerígenas

Palabras clave: Cristal fotónico, método de la matriz de transferencia, célula cancerígena, banda fotónica prohibida, biosensor

Resumen

En este trabajo calculamos la dependencia de la sensibilidad de cinco células cancerígenas con el ángulo incidente de la radiación en un cristal fotónico unidimensional. El estudio se realizó para dos tipos de polarización: Transversal Eléctrica (TE) y Transversal Magnética (TM). Las muestras de las células se infiltran mediante biopsia líquida dentro de una nano cavidad que funciona como recipiente, y es revestida por nanocompuestos formados por la mezcla de la sílice con nano partículas de plata de tal forma que rompe la periodicidad del cristal fotónico compuesto por capas de SiO2 y aire. Encontramos picos de resonancia en el espectro de transmisión que caracteriza a cada célula infiltrada, por ende, este mecanismo de detección permite que el cristal fotónico funcione como un biosensor. Mediante el método de la matriz de trasferencia, para la polarización TE se observó un incremento de la sensibilidad al aumentar el ángulo incidente. Sin embargo, en la polarización TM no existieron aumentos significativos. Adicionalmente, se varía el espesor de la nano cavidad y el factor de relleno para obtener una mayor optimización. Los resultados revelan un incremento en la sensibilidad al aumentar el espesor de la nanocavidad, mientras que al aumentar el factor de relleno la sensibilidad decrece.

Biografía del autor/a

Juan Carlos Trujillo-Yague*, Universidad Surcolombiana, Colombia

Msc. en Física, Facultad de Ciencias Exactas y Naturales, Universidad Surcolombiana, Neiva-Colombia, u20151135476@usco.edu.co

Francis Segovia-Chaves, Universidad Surcolombiana, Colombia

Físico, Grupo de Física Teórica, Programa de Física, Universidad Surcolombiana, Neiva-Colombia, francis.segoviac@gmail.com

Referencias bibliográficas

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light”, Nature, vol. 386, pp.143-149, Mar. 1997. https://doi.org/10.1038/386143a0

J. D. Joannopoulos, S. G Johnson, J. N. Winn, R. D Meade, “Photonic Crystals: Molding the Flow of Light”, 1th ed. Princeton: Princeton University Press, 2008. https://doi.org/10.2307/j.ctvcm4gz9

S. Noda y T. Baba, “Roadmap on Photonic Crystals”, Springer, Boston, MA, 2003. https://doi.org/10.1007/978-1-4757-3716-5

F. Segovia-Chaves y H. Vinck-Posada, “Dependence of the transmittance spectrum on temperature and thickness of superconducting defects coupled in dielectric one-dimensional photonic crystals”, Optik, vol. 170, pp. 384-390, Oct. 2018. https://doi.org/10.1016/j.ijleo.2018.05.109

F. Segovia-Chaves y H. Vinck-Posada, “Effects of hydrostatic pressure, temperature and angle of incidence on the transmittance spectrum of TE mode in a 1D semiconductor photonic crystal”, Optik, vol. 161, pp. 64-69, May. 2018. https://doi.org/10.1016/j.ijleo.2018.01.087

F. Segovia-Chaves y H. Vinck-Posada, “Tuning of transmittance spectrum in a one-dimensional superconductor-semiconductor photonic crystal”, Physica B: Condensed Matter, vol. 543, pp. 7-13, Aug. 2018. https://doi.org/10.1016/j.physb.2018.05.005

H. J. El-Khozondar, P. Mahalakshmi, R. J. El-Khozondar, N. R. Ramanujam, I. S. Amiri, and P. Yupapin, “Design of one dimensional refractive index sensor using ternary photonic crystal waveguide for plasma blood samples applications,” Physica E: Low-dimensional Systems and Nanostructures, vol. 111, pp. 29–36, Jul. 2019. https://doi.org/10.1016/j.physe.2019.02.030

L. Rayleigh. “XVII On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 24, no. 147, pp. 145-159, Aug. 1887.https://doi.org/10.1080/14786448708628074

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Physical review letters, vol. 58, no. 20, pp. 2059-2062, May. 1987. https://doi.org/10.1103/PhysRevLett.58.2059

S. John, “Strong localization of photons in certain disordered dielectric superlattices”. Physical review letters, vol. 58, no. 23, pp. 2486-2489, Jun. 1987. https://doi.org/10.1103/PhysRevLett.58.2486

S. K. Awasthi, U. Malaviya, y S. P. Ojha, “Enhancement of omnidirectional total-reflection wavelength range by using one- dimensional ternary photonic bandgap material”, Journal of the Optical Society of America B, vol. 23, no. 12, pp. 2566-2571, Nov. 2006. https://doi.org/10.1364/JOSAB.23.002566

V. Y. Zyryanov, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin y V. F. Shabanov, “Electrooptical switching in a one-dimensional photonic crystal”, Molecular Crystals and Liquid Crystals, vol. 488, no. 1, pp. 118-126, Sept. 2008. https://doi.org/10.1080/15421400802240359

J. S. Patel and K. Rastani, “Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays”, Optics letters, vol. 16, no. 7, pp. 532-534, Apr. 1991. https://doi.org/10.1364/OL.16.000532

El-Ghany, “Temperature Sensors Based on One Dimensional Photonic Crystals with Different Double Defects”, Journal of Nanoelectronics and Optoelectronics, vol. 13, no. 2, pp. 221-228., Feb. 2018. https://doi.org/10.1166/jno.2018.2199

J. Peng, D. Lyu, Y. Qu, W. Wang, T. Sun and M. Yang, “Thin films based one-dimensional photonic crystal for refractive index sensing”, Optik, vol. 158, pp. 1512-1518, Apr. 2018. https://doi.org/10.1016/j.ijleo.2018.01.047

Q. Gong y X. Hu, Photonic crystals: principles and applications, Boca Raton, EE. UU: Taylor & Francis Group, 2014. https://doi.org/10.1201/b15654

F. Segovia-Chaves, H. Vinck-Posada, V. Dhasarathan y M. S. Mani Rajan, “Transmittance spectrum in a 1D photonic crystal composed fused silica and sea water”. Optik, vol. 185, pp. 930-935, May 2019. https://doi.org/10.1016/j.ijleo.2019.03.110

C. A. M La Porta y S. Zapperi, The physics of cancer, Cambridge, United Kingdom: Cambridge University Press, 2017. https://doi.org/10.1017/9781316271759

D. Wirtz, K. Konstantopoulos y P. C. Searson, “The physics of cancer: the role of physical interactions and mechanical forces in metastasis”, Nature Reviews Cancer, vol. 11, no. 7, pp. 512-522, Jun. 2011. https://doi.org/10.1038/nrc3080

T. Meyer, M. Schmitt, O. Guntinas-Lichius and J. Popp, “Toward an All-Optical Biopsy”. Optics and Photonics News, vol. 30, no. 4, pp. 26-33, Apr. 2019. https://doi.org/10.1364/OPN.30.4.000026

B. Bohunicky y S, Mousa, “Biosensors: the new wave in cancer diagnosis”, Nanotechnology, science and applications, vol. 4, pp. 1-10, Dec. 2011. https://doi.org/10.2147/NSA.S13465

H. Inan, et. al “Photonic crystals: emerging biosensors and their promise for point-of-care applications”, Chemical Society Reviews, vol. 46, no 2, pp. 366-388, Nov. 2017. https://doi.org/10.1039/c6cs00206d

X. J. Liang, A.Q. Liu, C. S. Lim, T. C. Ayi, P. H. Yap “Determining refractive index of single living cell using an integrated microchip”, Sensors and Actuators A: Physical, vol. 133, no. 2, pp. 349-354 Feb. 2007. https://doi.org/10.1016/j.sna.2006.06.045

S. Suresh, “Biomechanics and biophysics of cancer cells”. Acta Materialia, vol. 55, no. 12, pp. 3989-4014, Jul. 2007. https://doi.org/10.1016/j.actamat.2007.04.022

N.R. Ramanujam, et al., “Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal”. Microsystem Technologies, vol. 25, no. 1, pp. 189-196, May. 2018. https://doi.org/10.1007/s00542-018-3947-6

P. Yeh, Optical waves in layered media. New York, EE.UU: Wiley-interscience, 2005.

S. Kinoshita, Bionanophotonics: an introductory textbook. Boca Raton, EE.UU: Taylor & Francis Group, 2016. https://doi.org/10.1201/b15260

N. R. Ramanujam, y K. J. Wilson. “Optical properties of silver nanocomposites and photonic band gap–Pressure dependence”, Optics Communications, vol. 368, pp. 174-179, Jun. 2016. https://doi.org/10.1016/j.optcom.2016.02.018

I.H. Malitsom, “Interspecimen comparison of the refractive index of fused silica”, Journal of the Optical Society of America, vol. 55, no. 10, pp. 1205-1209, Oct. 1965. https://doi.org/10.1364/josa.55.001205

I. A. Cree, “Liquid biopsy for cancer patients: Principles and practice,” Pathogenesis, vol. 2, no. 1–2, pp. 1–4, Jun. 2015. https://doi.org/10.1016/j.pathog.2015.05.001

R. Palmirotta, et all., “Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology,” Therapeutic Advances in Medical Oncology, vol. 10, p. 175883591879463, Aug. 2018. https://doi.org/10.1177/1758835918794630

N. Ayyanar, G. Thavasi Raja, M. Sharma, and D. Sriram Kumar, “Photonic Crystal Fiber-Based Refractive Index Sensor for Early Detection of Cancer,” IEEE Sensors Journal, vol. 18, no. 17, pp. 7093–7099, Jul. 2018. https://doi.org/10.1109/jsen.2018.2854375

Z. Chunxiang, C. Caixiu Luo, L. Hao, y X. Yingmao, “The research on magnetic tunable characteristics of photonic crystal defect localized modes with a defect layer of nanoparticle magnetic fluids,” Chinese Optics Letters, vol. 12, no. s1, pp. S11602–311604, 2014. https://doi.org/10.3788/col201412.s11602

Cómo citar
[1]
J. C. Trujillo-Yague y F. Segovia-Chaves, «Dependencia de la sensibilidad en un cristal fotónico unidimensional con el ángulo incidente de la radiación para la detección de célula cancerígenas», TecnoL., vol. 23, n.º 48, pp. 181–195, may 2020.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2020-05-15
Sección
Artículos de investigación

Métricas

Crossref Cited-by logo