Estudio técnico-económico de dos tecnologías de producción de biodiesel a partir de aceite de soya empleando el simulador superpro designer

Palabras clave: Aceite de soya, análisis de sensibilidad, biodiesel, glicerol, SuperPro Designer

Resumen

En el presente trabajo se efectuó un estudio técnico-económico preliminar de dos propuestas tecnológicas de producción de biodiesel empleando aceite de soya como materia prima principal y bajo las condiciones económicas actuales de Brasil. Para eso se utiliza el simulador SuperPro Designer® v.8.5. En la primera tecnología propuesta (Caso Base) se obtiene biodiesel refinado y glicerol crudo, mientras que en la segunda (Variante) también se produce biodiesel refinado, y el glicerol crudo es purificado hasta una pureza final de 99,75 %. Se efectuó un estudio de sensibilidad consistente en 12 corridas mediante el cual se evaluó la influencia de cinco variables de entrada sobre tres indicadores económicos: Valor Actual Neto (van), Tasa Interna de Retorno (tir) y Periodo de Recuperación de la Inversión (pri). Se deben invertir usd $ 18,5 millones y usd $ 21,4 millones para construir el Caso Base y la Variante, respectivamente. Los resultados del van, tir y pri para el Caso Base fueron de usd $ 17 444 000, 33,83 % y 2,54 años respectivamente, mientras que los valores obtenidos de estos 3 indicadores para la Variante fueron de usd $ 22 577 000, 38,05 % y 2,26 años respectivamente, cosa que indica que la Variante constituye la propuesta tecnológica más rentable. La introducción de operaciones de purificación de glicerol incrementa los indicadores económicos y de rentabilidad de la planta de producción de biodiesel. El estudio de sensibilidad permitió obtener ecuaciones que establecen la correlación estadística existente entre cinco variables de entrada y tres de salida. Se empleó el software Statgraphics Centurion® versión XVI para el procesamiento estadístico de los resultados obtenidos.

Biografía del autor/a

Leonardo Campos-Ramírez, Universidad Estatal del Norte Fluminense, Brasil

PhD.  en Ciencias Técnicas, Centro de Ciencias y Tecnologías Agropecuarias (CCTA), Universidad Estatal del Norte Fluminense, Río de Janeiro-Brasil, leocampito1969@gmail.com

Amaury Pérez-Sánchez*, Universidad de Camagüey, Cuba

Ingeniero Químico, Departamento de Ingeniería Química, Facultad de Ciencias Aplicadas, Universidad de Camagüey, Camagüey-Cuba, amauryps@nauta.cu

Aylín Benítez-Legrá , Instituto de Proyectos Azucareros, Cuba

Ingeniero Químico, Departamento de Proyectos, Instituto de Proyectos Azucareros, Camagüey- Cuba, aylin.benitez@iproyazcm.azcuba.cu

Isnel Benítez, Universidad de Camagüey, Cuba

PhD. en Ciencias Técnicas, Departamento de Ingeniería Química, Facultad de Ciencias Aplicadas, Universidad de Camagüey, Camagüey-Cuba, isnel.benites@reduc.edu.cu

Referencias bibliográficas

L. D. Fernández Betancurt, “Energías alternativas”, TecnoLógicas, no. 14, pp. 105-126, Jun. 2005. https://doi.org/10.22430/22565337.538

S. D. Romano y P. A. Sorichetti, Dielectric Spectroscopy in Biodiesel Production and Characterization. London, United Kingdom: Springer-Verlag London Limited, 2011.Disponible en: https://www.bookdepository.com/es/Dielectric-Spectroscopy-Biodiesel-Production-Characterization-Silvia-Daniela-Romano/9781447158721

J. I. Torregrosa, Conceptos básicos de simulación de procesos. Valencia, España: Departamento de Ingeniería Química y Nuclear, Universitat Politècnica de València, 2013. Disponible en: https://riunet.upv.es/handle/10251/29929

N. A. Auli, M. Sakinah, A. M. M. A. Bakri, H. Kamarudin, and M. N. Norazian, “Simulation Of Xylitol Production: A Review”, Australian Journal of Basic and Applied Sciences, vol. 7, no. 5, pp. 366-372, 2013. Disponible en: http://www.ajbasweb.com/old/ajbas/2013/Special,%20issue2%202013/366-372.pdf

S. Mani, J. Sundaram y K. C. Das, “Process simulation and modeling: Anaerobic digestion of complex organic matter”, Biomass and Bioenergy, vol. 93, pp. 158-167, Oct 2016. https://dx.doi.org/10.1016/j.biombioe.2016.07.018

A. Csighy, A. Koris y G. Vatai, “Modelling the Partial Demineralization Process of Cow Milk by Superpro Designer”, Hungarian Journal of Industry and Chemistry, vol. 45, n.° 2, pp. 9-12, 2017. https://doi.org/10.1515/hjic-2017-0013

A. C Aguiar, J. F. Osorio-Tobón, L. P. Sales Silva, G. Fernandez Barbero y J. Martínez, “Economic analysis of oleoresin production from malagueta peppers (Capsicum frutescens) by supercritical fluid extraction”, The Journal of Supercritical Fluids, vol. 133, pp. 86–93, Mar. 2018. https://doi.org/10.1016/j.supflu.2017.09.031

P. Somavat, D. Kumar y V. Singh, “Techno-economic feasibility analysis of blue and purple corn processing for anthocyanin extraction and ethanol production using modified dry grind process”, Industrial Crops & Products, vol. 115, pp. 78–87, May. 2018 https://doi.org/10.1016/j.indcrop.2018.02.015

D. K. Govindarajan, Y. Meganathan, G. P. Udayakumar y R. Kothandan, “Techno-Economic Analysis for the Production of Ethanol from Ipomoea batatas (sweet potato)”, American International Journal of Research in Science, Technology, Engineering & Mathematics, pp. 13-24, 2019. Disponible en: https://www.researchgate.net/publication/331224874_TechnoEconomic_Analysis_for_the_Production_of_Ethanol_from_Ipomoea_batatas_sweet_potato

SuperPro Designer, “Biodiesel production from degummed soybean oil”, Intelligen, Inc., & Massachusetts Institute of Technology, 2005. Disponible en: https://www.intelligen.com/superpro_overview.html

C. M. García, “Simulación de una planta de producción y purificación de biodiesel a partir de aceite de palma y etanol usando el simulador comercial HYSYS Plant 3.2”, (Tesis de grado), Facultad de Ingenierías Fisicoquímicas, Universidad Industrial de Santander, Bucaramanga, Colombia, 2007. Disponible en: https://docplayer.es/11464026-Simulacion-de-una-planta-de-produccion-y-purificacion-de-biodiesel-a-partir-de-aceite-de-palma-y-etanol-usando-el-simulador-comercial-hysys-plant-3.html

S. Lee, D. Posarac y N. Ellis, “Process simulation and economic analysis of biodiesel production processes using fresh and waste vegetable oil and supercritical methanol”, Chemical Engineering Research and Design, vol. 89, no. 12. pp. 2626–2642, Dec. 2011. https://doi.org/10.1016/j.cherd.2011.05.011

V. F. Marulanda, “Biodiesel production by supercritical methanol transesterification: Process simulation and potential environmental impact assessment”, Journal of Cleaner Production, vol. 33, pp. 109-116, Sep. 2012. https://doi.org/10.1016/j.jclepro.2012.04.022

M. Franco, “Simulación del proceso de producción de biodiesel a partir de aceites vegetales en condiciones súper-críticas”, (Tesis de Maestría), Universitat Politecnica de Catalunya, Barcelona, 2013. Disponibe en: https://core.ac.uk/download/pdf/41810657.pdf

A. F. Young, F. L. P. Pessoa y E. M. Queiroz, “Comparison between Biodiesel Production from Soybean Oil and Palm Oil with Ethanol: Design and Economic Evaluation”, Chemical Engineering Transactions, vol. 43, pp. 325-330, May. 2015. https://doi.org/10.3303/CET1543055

L. R. D. la Rosa, E. Henríquez Montero, E. Sánchez Tuirán y K. A. Ojeda Delgado, “Diseño y simulación de una planta para la producción de biodiésel a partir de Jatropha curcas L. en el departamento de Bolívar”, rev.ion, vol. 28, no. 1, pp. 73-85. Jul. 2015. Disponible en: https://revistas.uis.edu.co/index.php/revistaion/article/view/4956

Okullo y N. Tibasiima, “Process Simulation of Biodiesel Production from Jatropha Curcas Seed Oil”, American Journal of Chemical Engineering, vol. 5, n.° 4, pp. 56-63, Jul. 2017. https://doi.org/10.11648/j.ajche.20170504.12

M. I. M. Hamid y K. M. Wagialla, “Simulation of Jatropha Biodiesel production using SuperPro Designer”, Journal of Basic and Applied Science, vol. 2, no. 1, pp. 115-142, Mar. 2017. Disponible en: https://pdfs.semanticscholar.org/1e4c/1783d2cc7c06b7fd4bdf69d5c2c64e034f5b.pdf

Y. B. Abdurakhman, Z. A. Putra y M. R. Bilad, “Aspen HYSYS Simulation for Biodiesel Production from Waste Cooking Oil using Membrane Reactor”, en IOP Conf. Series: Materials Science and Engineering, vol. 180, pp. 1-6, Bandung. 2017. https://doi.org/10.1088/1757899X/180/1/012273

S. P. Souza, J. E. A. Seabra y L. A. Horta Nogueira, “Feedstocks for biodiesel production: Brazilian and global perspectives”, Biofuels, pp. 1-24, vol. p, no. 4, Jan. 2017. https://dx.doi.org/10.1080/17597269.2017.1278931

F. P. Nascimento, A. R. G. Oliveira, M. L. L. Paredes, A. L. H. Costa y F. L. P. Pessoa, “Biodiesel Production from Supercritical Ethanolysis of Soybean Oil”, Chemical Engineering Transactions, vol. 32, pp. 829-834, 2013. Disponible en: https://doi.org/10.3303/CET1332139

M. Rahimi, B. Aghel, M. Alitabar, A. Sepahvand y H. R. Ghasempour, “Optimization of biodiesel production from soybean oil in a microreactor”, Energy Conversion and Management, vol. 79, pp. 599–605, Mar. 2014. https://doi.org/10.1016/j.enconman.2013.12.065

S. Joshi, P. R. Gogate, P. F. Moreira y R. Giudici, “Intensification of biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer”. Ultrasonics-Sonochemistry, vol. 39, pp. 645–653, 2017. https://doi.org/10.1016/j.ultsonch.2017.05.029

P. Adewale, M. J. Dumont y M. Ngadi, “Enzyme-catalyzed synthesis and kinetics of ultrasonic-assisted biodiesel production from waste tallow”, Ultrasonics - Sonochemistry, vol. 27, pp. 1-9. Nov. 2015. https://doi.org/10.1016/j.ultsonch.2015.04.032

V. F. De Almeida, P. J. García-Moreno, A. Guadix, y E. M. Guadix, “Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil: Optimization of fuel properties”, Fuel Processing Technology, vol. 133, pp. 152–160, May. 2015. http://dx.doi.org/10.1016/j.fuproc.2015.01.041

E. Alptekin, M. Canakci y H. Sanli, “Biodiesel production from vegetable oil and waste animal fats in a pilot plant”, Waste Management, vol. 34, no. 11, pp. 2146–2154, Nov. 2014. https://doi.org/10.1016/j.wasman.2014.07.019

P. J. García-Moreno, M. Khanum, A. Guadix y E. M. Guadix, “Optimization of biodiesel production from waste fish oil”, Renewable Energy, vol. 68, pp. 618-624, Aug. 2014. https://doi.org/10.1016/j.renene.2014.03.014

A. E. da Costa, C. A. Klimeck Gouvea, B. B. Lobo, J. K. Andreazza, K. S. Fadhil Al-Rubaie “Optimization for producing biodiesel from ethanol and waste frying oil with a high concentration of ester”, Revista Facultad de Ingeniería, Universidad de Antioquia n.° 79, pp. 185-191, Jun. 2016. http://dx.doi.org/10.17533/udea.redin.n79a17

R. D. Micic, M. D. Tomic, F. E. Kiss, E. B. Nikolic-Djoric y M. Ð. Simikic, “Influence of reaction conditions and type of alcohol on biodiesel yields and process economics of supercritical transesterification”, Energy Conversion and Management, vol. 86, pp. 717–726, Oct. 2014. https://doi.org/10.1016/j.enconman.2014.06.052

N. A. Negm, G. H. Sayed, O. I. Habib, F. Z. Yehia y E. A. Mohamed, “Heterogeneous catalytic transformation of vegetable oils into biodiesel in one-step reaction using super acidic sulfonated modified mica catalyst”, Journal of Molecular Liquids, vol. 237, pp. 38–45, Jul. 2017. https://doi.org/10.1016/j.molliq.2017.04.076

T. Wang. “Leading biodiesel producers worldwide in 2018, by country (in billion liters)”, Disponible en: https://www.statista.com/statistics/271472/biodiesel-production-in-selected-countries/

S. Barros. Biofuels Annual. Sao Paulo, Brasil: Global Agricultural Information Network (GAIN), No. BR18017. Oct. 2018. Disponible en: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Biofuels%20Annual_Sao%20Paulo%20ATO_Brazil_8-10-2018.pdf

ChemicaLogic Corporation, “Thermodynamic and Transport Properties of Water and Steam

for Windows application available at no cost.”, ChemicaLogic Steam Tab Companion, Version 2.0, 2003. Disponible en: http://www.chemicalogic.com/Pages/DownloadSteamTabCompanion.html

M. Ahmad, M. A. Khan, M. Zafar y S. Sultana, Practical Handbook on Biodiesel Production and Properties, 2nd ed., Boca Raton, USA: CRC Press, 2012. Disponible en: https://www.routledge.com/Practical-Handbook-on-Biodiesel-Production-and-Properties/Ahmad/p/book/9781466507432?utm_source=crcpress.com&utm_medium=referral

G. Knothe, J. Krahl y J. V. Gerpen, The Biodiesel Handbook, 2nd ed., Urbana, USA: AOCS Press, 2010. Disponible en: https://www.sciencedirect.com/book/9781893997622/the-biodiesel-handbook

A. B. Koc, M. Abdullah y M. Fereidouni, Soybeans Processing for Biodiesel Production. En T.-B. Ng (Ed.), Soybean-Applications and Technology. Rijeka, Croatia: InTech, pp. 19-32. 2011. Disponible en: https://books.google.com.co/books?hl=es&lr=&id=fjCaDwAAQBAJ&oi=fnd&pg=PA19&dq=Soybeans+Processing+for+Biodiesel+Production&ots=vMaRDWdbTI&sig=UaQDjg_uOGvt53vV4a1sATcf6Sw#v=onepage&q=Soybeans%20Processing%20for%20Biodiesel%20Production&f=false

J. McFarlane, Processing of Soybean Oil into Fuels. In D. Krezhova (Ed.), Recent Trends for Enhancing the Diversity and Quality of Soybean Products. Rijeka, Croatia: InTech, 2011. Disponible en: https://pdfs.semanticscholar.org/8914/c1d67c46dea693d0f8addf19f03f41741439.pdf?_ga=2.252011338.21485239.1584022131-1051413113.1557239246

M. Stoytcheva y G. Montero, Biodiesel – Feedstocks and Processing Technologies. Rijeka, Croatia: InTech, 2011. Disponible en: https://books.google.com.co/books?hl=es&lr=&id=moqfDwAAQBAJ&oi=fnd&pg=PR11&dq=Biodiesel+%E2%80%93+Feedstocks+and+Processing+Technologies.+Rijeka,+Croatia:+InTech,&ots=JipWN4rVFv&sig=Y_yAghBlSwxEXfF8pUxCLyKM7_k#v=onepage&q=Biodiesel%20%E2%80%93%20Feedstocks%20and%20Processing%20Technologies.%20Rijeka%2C%20Croatia%3A%20InTech%2C&f=false

M. J. Haas, A. J. McAloon, W. C. Yee, and T. A. Foglia, “A process model to estimate biodiesel production costs,” Bioresour. Technol., vol. 97, no. 4, pp. 671–678, Mar. 2006. https://doi.org/10.1016/j.biortech.2005.03.039

Oleofinos. “Especificación técnica Aceite de Soya R.B.D”. 2019. Disponible en: https://oleofinos.com.mx/fichas/aceite%20de%20soya.pdf

Agencia Nacional do Petróleo, Gas Natural e Biocombustíveis . “Anuário Estatístico Brasileiro do Petróleo, Gás Natural e Biocombustíveis 2019”. Recuperado el 16 de mayo, 2019. Disponible en: http://www.anp.gov.br/publicacoes/anuario-estatistico/5237-anuario-estatistico-2019

CEPEA. Center for Advanced Studies in Applied Economics, 2018. Disponible en: https://www.cepea.esalq.usp.br/en/indicator/soja.aspx

Matche. “Chemical Equipment Cost”, 2014. Recuperado el 20 de junio de 2019, de Disponible en: http://www.matche.com/

R. H. Perry y D. Green, Perry's Chemical Engineers' Handbook, 8th ed. New York, USA: McGraw-Hill, 2008. Disponible en: https://b-ok.cc/book/633882/24d119

M. S. Peters, K. D. Timmerhaus y R. E. West, Plant Design and Economics for Chemical Engineers, 4th ed. New York, USA: McGraw-Hill, 2003.

R. K. Sinnott, Chemical Engineering Design, 4th ed., vol. 6, Oxford, United Kingdom: Elsevier Butterworth-Heinemann, 2005. Disponible en: https://b-ok.cc/book/600898/84860e

G. Towler y R. Sinnott, Chemical Engineering Design, 2nd ed. Oxford, United Kingdom: Butterworth-Heinemann, 2013. Disponible en: https://www.elsevier.com/books/chemical-engineering-design/towler/978-0-08-096659-5

S. Jenkins, “Facts At your Fingertips, Fermentation Considerations and Economics”, Chemical Engineering, vol. 126, n.° 6, pp. 72, June 2019. Disponible en: https://view.imirus.com/515/document/13160/page/1

G. Baca Urbina, Evaluación de proyectos. 6ta ed., México, D. F., México: McGraw-Hill/Interamericana Editores, S.A. de C.V., 2010. Disponible en: https://b-ok.cc/book/2476652/dcd5cc

Cómo citar
[1]
L. Campos-Ramírez, A. Pérez-Sánchez, A. . Benítez-Legrá, y I. . Benítez, «Estudio técnico-económico de dos tecnologías de producción de biodiesel a partir de aceite de soya empleando el simulador superpro designer», TecnoL., vol. 23, n.º 48, pp. 119–141, may 2020.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2020-05-15
Sección
Artículos de investigación

Métricas