Diseño de relajadores de campo eléctrico usando optimización por enjambre de partículas y el método de elementos finitos

  • Jhon E. González-Pérez Universidad del Valle
  • Diego F. García-Gómez Universidad del Valle
Palabras clave: Optimización por enjambre de partículas, método de elementos finitos, diseño de equipos de alta tensión, electrodos relajadores de campo eléctrico

Resumen

En este artículo se presenta una metodología para el diseño de electrodos relajadores de campo eléctrico, la cual se basa en un proceso de optimización desarrollado mediante la técnica metaheurística de optimización por enjambre de partículas. La función objetivo del proceso de optimización incluye el modelo electro-estático del equipo de alta tensión, el cual es resuelto mediante el método de elementos finitos. La metodología propuesta fue implementada por medio de las herramientas computacionales COMSOL Multiphysics y MATLAB, y validada a través del diseño de los electrodos relajadores de campo eléctrico de un divisor de tensión resistivo para medición de ondas de impulso de tipo rayo.

Biografía del autor/a

Jhon E. González-Pérez, Universidad del Valle
Ingeniero Electricista, Escuela de Ingeniería Eléctrica y Electrónica, Facultad de Ingeniería, Universidad del Valle, Florida
Diego F. García-Gómez, Universidad del Valle
PhD. en Ingeniería Eléctrica, Electrónica y Automática, MSc. en Sistemas de Generación de Energía, Ingeniero Electricista, Escuela de Ingeniería Eléctrica y Electrónica, Grupo de Investigación en Alta Tensión (GRALTA), Facultad de Ingeniería, Universidad del Valle, Cali

Referencias bibliográficas

D. F. García, E. M. Saens, T. A. Prado, and M. Martinez, “Metodology for Lightning Impulse Voltage Divisors Design,” Latin America Transactions, IEEE (Revista IEEE America Latina), vol. 7, no. 1. pp. 71–77, 2009.

N. Pattanadech, S. Potivetkul, and P. Yuttagowith, “Corona phenomena of various high voltage shielding types,” in Power System Technology, 2006. PowerCon 2006. International Conference on, 2006, pp. 1–6.

I. Feria and G. Gómez, “Diseño y manufactura de la base, el reductor y el mecanismo de torsión para el ensamblaje de una máquina educativa para prueba de torsión,” México, 2011.

C. Zhang, J. J. Kester, C. W. Daley, and S. J. Rigby, “Electric field analysis of high voltage apparatus using finite element method,” in Electrical Insulation and Dielectric Phenomena (CEIDP), 2010 Annual Report Conference on, 2010, pp. 1–4.

J. Du, Z. Peng, J. Li, S. Zhang, N. Li, and C. Fan, “Electric field calculation and grading ring optimization for 1000 kV AC post porcelain insulator,” in Solid Dielectrics (ICSD), 2013 IEEE International Conference on, 2013, pp. 198–201.

S. Zhang, Z. Peng, L. Peng, and H. Wang, “Optimization of corona ring structure for UHV composite insulator using finite element method and PSO algorithm,” in Solid Dielectrics (ICSD), 2013 IEEE International Conference on, 2013, pp. 210–213.

B. M’hamdi, M. Teguar, and A. Mekhaldi, “Optimal design of corona ring on HV composite insulator using PSO approach with dynamic population size,” IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 2, pp. 1048–1057, 2016.

C. Duarte and J. Quiroga, “Algoritmo PSO para identificación de parámetros en un motor DC System identification of a DC motor using PSO algorithm,” Rev. Fac. Ing. Univ. Antioquia, no. 55, pp. 116–124, 2010.

M. Heydarianasl and M. F. Rahmat, “Optimization of electrostatic sensor electrodes using particle swarm optimization technique,” Int. J. Adv. Manuf. Technol., pp. 1–15, 2016.

Z. Liu, J. Lu, and P. Zhu, “Lightweight design of automotive composite bumper system using modified particle swarm optimizer,” Compos. Struct., vol. 140, pp. 630–643, 2016.

R. C. Eberhart, J. Kennedy, and others, “A new optimizer using particle swarm theory,” in Proceedings of the sixth international symposium on micro machine and human science, 1995, vol. 1, pp. 39–43.

D. Merkle and C. Blum, “Swarm Intelligence: Introduction and Application.” Springer Verlag Gmbh, 2008.

R. Poli, “An analysis of publications on particle swarm optimization applications,” Essex, UK Dep. Comput. Sci. Univ. Essex, 2007.

M. Muñoz, J. López, and E. F. Caicedo, “Inteligencia de enjambres: sociedades para la solución de problemas (una revisión),” Ing. e Investig., vol. 28, no. 2, pp. 119–130, 2008.

M. L. C. Cagnina, “Optimización mono y multiobjetivo a través de una heurística de inteligencia colectiva,” Doctoral Thesis, Universidad Nacional de San Luis, 2010.

D. K. Cheng, Fundamentos de electromagnetismo para ingeniería. Pearson Educación, 1998.

I. C. Trelea, “The particle swarm optimization algorithm: convergence analysis and parameter selection,” Inf. Process. Lett., vol. 85, no. 6, pp. 317–325, 2003.

J. C. Bansal, P. K. Singh, M. Saraswat, A. Verma, S. S. Jadon, and A. Abraham, “Inertia weight strategies in particle swarm optimization,” in Nature and Biologically Inspired Computing (NaBIC), 2011 Third World Congress on, 2011, pp. 633–640.

“IEEE Standard for High-Voltage Testing Techniques,” IEEE Std 4-2013 (Revision IEEE Std 4-1995), pp. 1–213, May 2013.

Cómo citar
[1]
J. E. González-Pérez y D. F. García-Gómez, «Diseño de relajadores de campo eléctrico usando optimización por enjambre de partículas y el método de elementos finitos», TecnoL., vol. 20, n.º 38, pp. 27–39, feb. 2017.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2017-02-21
Sección
Artículos de investigación

Métricas