Photovoltaic battery charger with sliding mode control and charging current derivative limitation

  • Carlos A. Ramos-Paja Universidad Nacional de Colombia
  • Andrés J. Saavedra-Montes Universidad Nacional de Colombia
  • Juan D. Bastidas-Rodríguez Universidad Industrial de Santander
Keywords: Battery charger, photovoltaic panel, Buck converter, sliding-mode control, current derivative limitation


In stand-alone photovoltaic (PV) systems, battery chargers are important to guarantee
the energy supply when sunlight is not available. Such chargers need to track the maximum
power point (MPPT) and limit the derivative of the batteries’ charging current to extend
their lifetime. This paper proposes a battery charging system composed of a Buck converter,
a cascade control of the battery current and the PV panel voltage, and the Perturb and
Observe (P&O) MPPT technique. P&O generates the reference of the panel voltage for the
external loop of the cascade control implemented with a P regulator, whose control action is
the reference of the batteries’ charging current. Such current reference passes through a
derivative limiter before reaching the internal current control loop, which is implemented
by a sliding-mode controller (SMC). This paper includes transversality and reachability
analyses of the SMC, as well as the procedure to design the P regulator. The proposed
system is validated by simulations in PSIM software to show its capacity to perform MPPT
and limit the battery’s charging current derivative at the same time.


Download data is not yet available.

Author Biographies

Carlos A. Ramos-Paja, Universidad Nacional de Colombia

PhD en Ingeniería Electrónica, Automática y Comunicaciones, Magíster en
Ingeniería Énfasis en Automática, Magíster en Ingeniería Electrónica
Ingeniero Electrónico, Departamento de Energía Eléctrica y Automática

Andrés J. Saavedra-Montes, Universidad Nacional de Colombia

PhD en Ingeniería, Magíster en Sistemas de Generación de Energía Eléctrica
Ingeniero Electricista, Departamento de Energía Eléctrica y Automática

Juan D. Bastidas-Rodríguez, Universidad Industrial de Santander

PhD en Ingeniería, Ingeniero Electrónico, Escuela de Ingenierías Eléctrica,
Electrónica y de Telecomunicaciones


[1] REN21, “Advancing the global renewable
energy transition,” 2017.
[2] IEA-PVPS, “2016 Snapshot of Global Photovoltaic Markets,” 2017.
[3] IDEAM, “Atlas de radiación solar,
ultravioleta y ozono de Colombia,” Atlas,
2014. [Online]. Available:
[4] World Bank Group, “Global Solar Atlas,”
2016. [Online]. Available:
[5] F. Palmiro, R. Rayudu, and R. Ford,
“Modelling and simulation of a solar PV
lithium ion battery charger for energy kiosks
application,” in 2015 IEEE PES Asia-Pacific
Power and Energy Engineering Conference
(APPEEC), 2015, vol. 3, pp. 1–5.
[6] R. A. Messenger and J. Ventre, Photovoltaics
Systems Engineering, Second. Boca Raton,
London, New York, Washigton D.C.: Taylor
& Francis, 2004.
[7] Y. E. Abu Eldahab, N. H. Saad, and A.
Zekry, “Enhancing the design of battery
charging controllers for photovoltaic
systems,” Renew. Sustain. Energy Rev., vol.
58, pp. 646–655, May 2016.
[8] J. López, S. I. Seleme, P. F. Donoso, L. M. F.
Morais, P. C. Cortizo, and M. A. Severo,
“Digital control strategy for a buck converter
operating as a battery charger for standalone
photovoltaic systems,” Sol. Energy, vol.
140, pp. 171–187, Dec. 2016.
[9] A. M. Gee, F. V. P. Robinson, and R. W.
Dunn, “Analysis of Battery Lifetime
Extension in a Small-Scale Wind-Energy
System Using Supercapacitors,” IEEE Trans.
Energy Convers., vol. 28, no. 1, pp. 24–33,
Mar. 2013.
[10] J. Li, A. M. Gee, M. Zhang, and W. Yuan,
“Analysis of battery lifetime extension in a
SMES-battery hybrid energy storage system
using a novel battery lifetime model,”
Energy, vol. 86, pp. 175–185, Jun. 2015.
[11] G. Ning, B. Haran, and B. N. Popov,
“Capacity fade study of lithium-ion batteries
cycled at high discharge rates,” J. Power
Sources, vol. 117, no. 1–2, pp. 160–169, May
[12] J. Li, R. Xiong, Q. Yang, F. Liang, M. Zhang,
and W. Yuan, “Design/test of a hybrid energy
storage system for primary frequency control
using a dynamic droop method in an isolated
microgrid power system,” Appl. Energy, vol.
201, pp. 257–269, Sep. 2017.
[13] J. Li, Q. Yang, F. Robinson, F. Liang, M.
Zhang, and W. Yuan, “Design and test of a
new droop control algorithm for a
SMES/battery hybrid energy storage
system,” Energy, vol. 118, pp. 1110–1122,
Jan. 2017.
[14] Sony Energy Devices Corporation and Device
Solutions Business Group, “Lithium Ion
Rechargeable Battery Technical
Information,” 2012.
[15] E. A. Jiménez-Brea, E. I. Ortiz-Rivera, A.
Salazar-Llinás, and J. González-Llorente,
“Simple photovoltaic solar cell dynamic
sliding mode controlled maximum power
point tracker for battery charging
applications,” in Conference Proceedings -
IEEE Applied Power Electronics Conference
and Exposition - APEC, 2010, pp. 666–671.
[16] A. M. S. S. Andrade, E. Mattos, C. O. Gamba,
L. Schuch, and M. L. da S. Martins, “Design
and implementation of PV power zeta
converters for battery charger applications,”
in 2015 IEEE Energy Conversion Congress
and Exposition (ECCE), 2015, pp. 3135–
[17] A. M. S. S. Andrade, L. Schuch, and M. L. da
S. Martins, “Photovoltaic battery charger
based on the Zeta converter: Analysis, design
and experimental results,” in 2015 IEEE
24th International Symposium on Industrial
Electronics (ISIE), 2015, pp. 379–384.
[18] A. M. S. S. Andrade, R. C. Beltrame, L.
Schuch, and M. L. da S. Martins, “PV
module-integrated single-switch DC/DC
converter for PV energy harvest with battery
charge capability,” in 2014 11th IEEE/IAS
International Conference on Industry
Applications, 2014, vol. 1, pp. 1–8.
[19] D. G. Montoya, C. A. Ramos-Paja, and R.
Giral, “Improved Design of Sliding-Mode
Controllers Based on the Requirements of
MPPT Techniques,” IEEE Trans. Power
Electron., vol. 31, no. 1, pp. 235–247, Jan.
[20] D. González-Montoya, C. A. Ramos-Paja, and
R. Giral, “Maximum power point tracking of
photovoltaic systems based on the sliding
mode control of the module admittance,”
Electr. Power Syst. Res., vol. 136, pp. 125–
134, Jul. 2016.
[21] R. Haroun, A. El Aroudi, A. Cid-Pastor, G.
Garica, C. Olalla, and L. Martinez-Salamero,
“Impedance Matching in Photovoltaic
Systems Using Cascaded Boost Converters
and Sliding-Mode Control,” IEEE Trans.
Power Electron., vol. 30, no. 6, pp. 3185–
3199, Jun. 2015.
[22] A. Cid-Pastor, L. Martínez-Salamero, A. El
Aroudi, R. Giral, J. Calvente, and R. Leyva,
“Synthesis of loss-free resistors based on
sliding-mode control and its applications in
power processing,” Control Eng. Pract., vol.
21, no. 5, pp. 689–699, May 2013.
[23] J. Guacaneme, D. González, and C. Trujillo,
“Controlador difuso inteligente para un
cargador de baterías de plomo-ácido,”
Ingeniería, vol. 8, no. 2, pp. 62–67, 2003.
[24] SMA, “Technical Information Battery
Management of the Sunny Island,” 2017.
[25] O. López-Santos, D. A. Zambrano Prada, Y.
A. Aldana-Rodríguez, H. A. Esquivel-Cabeza,
G. García, and L. Martínez-Salamero,
“Control of a Bidirectional Cûk Converter
Providing Charge/Discharge of a Battery
Array Integrated in DC Buses of Microgrids,”
in Applied Computer Sciences in
Engineering, J. C. Figueroa-García, E. R.
López-Santana, J. L. Villa-Ramírez, and R.
Ferro-Escobar, Eds. Cham: Springer
International Publishing, 2017, pp. 495–507.
[26] M. E. Sahin, H. I. Okumus, and H. Kahveci,
“Sliding mode control of PV powered DC/DC
Buck-Boost converter with digital signal
processor,” in 2015 17th European
Conference on Power Electronics and
Applications (EPE’15 ECCE-Europe), 2015,
pp. 1–8.
[27] N. Femia, G. Petrone, G. Spagnuolo, and M.
Vitelli, “Optimization of Perturb and
Observe Maximum Power Point Tracking
Method,” IEEE Trans. Power Electron., vol.
20, no. 4, pp. 963–973, Jul. 2005.
[28] G. Petrone and C. A. Ramos-Paja, “Modeling
of photovoltaic fields in mismatched
conditions for energy yield evaluations,”
Electr. Power Syst. Res., vol. 81, no. 4, pp.
1003–1013, Apr. 2011.
[29] Y.-C. Chuang and Y.-L. Ke, “Analysis and
implementation of zero voltage switching
integrated buck-flyback converter,” IET
Power Electron., vol. 6, no. 7, pp. 2846–2852,
[30] Siew-Chong Tan, Y. M. Lai, and C. K. Tse,
“General Design Issues of Sliding-Mode
Controllers in DC–DC Converters,” IEEE
Trans. Ind. Electron., vol. 55, no. 3, pp.
1160–1174, Mar. 2008.
[31] H. Sira-Ramírez, “Sliding Motions in
Bilinear Switched Networks,” IEEE Trans.
Circuits Syst., vol. 34, no. 8, pp. 919–933,
[32] P. A. Ortiz-Valencia and C. A. Ramos-Paja,
“Sliding-mode controller for maximum power
point tracking in grid-connected photovoltaic
systems,” Energies, vol. 8, no. 11, pp. 12363–
12387, 2015.
[33] C. A. Ramos-Paja, D. González, and A. J.
Saavedra-Montes, “Accurate calculation of
settling time in second order systems: A
photovoltaic application,” Rev. Fac. Ing.
Univ. Antioquia, no. 66, pp. 104–117, 2013.
[34] T. Green, “TI Precision Designs: Reference
Design - Single Op-Amp Slew Rate Limiter,”
Texas Instruments Incorporated, 2013.
[35] Digatron, “Universal Battery Tester ME
Series,” Digatron. [Online]. Available:
[36] Bitrode, “MCV-EV/HEV Battery Cell
Testter,” 2015. [Online]. Available:
How to Cite
Ramos-Paja, C., Saavedra-Montes, A., & Bastidas-Rodríguez, J. (2018, May 14). Photovoltaic battery charger with sliding mode control and charging current derivative limitation. TecnoLógicas, 21(42), 129-145.
Research Papers