Island operation capability in the Colombian electrical market: a promising ancillary service of distributed energy resources

  • Juan D. Marín-Jiménez Universidad Nacional de Colombia
  • Sandra X. Carvajal-Quintero Universidad Nacional de Colombia
  • Josep M. Guerrero Universidad de Aalborg
Keywords: Distributed Energy Resources, Distributed Generation, Microgrids, Islanded Operation Capability


Nowadays most distributed generators are not designed to operate under islanded conditions. The ancillary service of islanded operation capability is proposed as a technical support service with the ability to increase the reliability, security and flexibility of an electrical distribution system. Nevertheless, island operation entails technical, economic and social issues that must be discussed and analyzed during the planning stage.
This article compares an intentional island project to a preplanned island and describes the main issues and benefits of islanded operation. Additionally, the reliability of the service to implement the islanded operation capability as an ancillary service is economically assessed, which shows that island-based operation has the potential to minimize non-supplied energy up to 50%. Also, a technical analysis of implementing island operation capability ancillary service is presented. Subsequently, an existing electrical distribution system with small hydropower plants is considered as a study case in order to identify the technical requirements set out for both, the distribution system and the generation source. Finally, taking into account the current Law and regulations, a proposal is outlined for the implementation of the island operation capability ancillary service in the Colombian electrical system.


Download data is not yet available.

Author Biographies

Juan D. Marín-Jiménez, Universidad Nacional de Colombia

PhD en Ingeniería, Magister en Ingeniería Eléctrica, Ingeniero Electricista, Facultad de Ingeniería y Arquitectura, Departamento de Ingeniería Eléctrica, Electrónica y Computación. Grupo E3P

Sandra X. Carvajal-Quintero, Universidad Nacional de Colombia

PhD en Ingeniería, Magister en Automatización Industrial, Ingeniera Electricista, Facultad de Ingeniería y Arquitectura, Departamento de Ingeniería Eléctrica, Electrónica y Computación. Grupo E3P

Josep M. Guerrero, Universidad de Aalborg

PhD en Electrónica de Potencia, Magister en Ingeniería Electrónica, Ingeniero de Telecomunicaciones, Departamento de Tecnología en Energía


[1] ENTSO-E, “Supporting Document for the Network Code on Emergency and Restoration,” ENTSO-E AISBL, 2015.
[2] M. Braun, Provision of ancillary services by distributed generators: Technological and economic perspective, vol. 10. Germany: kassel university press GmbH, 2009.
[3] B. Olek, “Deployment of energy storages for ancillary services,” in 11th International Conference on the European Energy Market (EEM14), 2014, pp. 1–5.
[4] F. Alsokhiry, G. P. Adam, and K. L. Lo, “Contribution of distributed generation to ancillary services,” in 2012 47th International Universities Power Engineering Conference (UPEC), 2012, pp. 1–5.
[5] A. C. Rueda-Medina, A. Padilha-Feltrin, and J. R. S. Mantovani, “Active power reserve for frequency control provided by distributed generators in distribution networks,” in 2014 IEEE PES General Meeting | Conference & Exposition, 2014, pp. 1–5.
[6] A. Burgio, G. Brusco, D. Menniti, A. Pinnarelli, and N. Sorrentino, “Design of a grid-connected Photovoltaic system with grid ancillary services,” in 2013 Africon, 2013, pp. 1–7.
[7] F. Santamaria, J. Hernandez, and C. L. Trujillo, “Regulation on distributed generation: Latin American Case,” in 2014 IEEE PES Transmission & Distribution Conference and Exposition - Latin America (PES T&D-LA), 2014, pp. 1–7.
[8] Congreso de la República, Ley 1715. Colombia, 2014, pp. 1–24.
[9] N. K. Roy and H. R. Pota, “Current Status and Issues of Concern for the Integration of Distributed Generation Into Electricity Networks,” IEEE Syst. J., vol. 9, no. 3, pp. 933–944, Sep. 2015.
[10] S. P. Chowdhury, P. Crossley, and S. Chowdhury, Microgrids and Active Distribution Networks. Institution of Engineering and Technology, 2009.
[11] J. D. Marín-Jiménez, S. X. Carvajal-Quintero, and A. Arango-Manrique, “Discusión de la implementación en Colombia del servicio complementario capacidad de operación por islas,” Directora-Editora, vol. 43, pp. 99–108, 2014.
[12] S. Granfors, “Online testing of generating units on their ability to regulate frequency during restoration of an islanded grid,” in IEEE PES General Meeting, 2010, pp. 1–5.
[13] H. Liang, L. Cheng, and S. Liu, “Monte Carlo simulation based reliability evaluation of distribution system containing microgrids,” Power Syst. Technol., vol. 35, pp. 76–81, 2011.
[14] H. Gharavi and R. Ghafurian., “Smart Grid: The Electric Energy System of the Future,” Proc. IEEE, vol. 99, no. 6, pp. 917–921, 2011.
[15] P. Tenti, A. Costabeber, P. Mattavelli, and D. Trombetti, “Distribution Loss Minimization by Token Ring Control of Power Electronic Interfaces in Residential Microgrids,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3817–3826, Oct. 2012.
[16] O. Palizban, K. Kauhaniemi, and J. M. Guerrero, “Microgrids in active network management – part II: System operation, power quality and protection,” Renew. Sustain. Energy Rev., vol. 36, pp. 440–451, Aug. 2014.
[17] J. M. Guerrero, M. Chandorkar, T. Lee, and P. C. Loh, “Advanced Control Architectures for Intelligent Microgrids—Part I: Decentralized and Hierarchical Control,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1254–1262, Apr. 2013.
[18] H. Mohamad, H. Mokhlis, A. H. A. Bakar, and H. W. Ping, “A review on islanding operation and control for distribution network connected with small hydro power plant,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 3952–3962, Oct. 2011.
[19] M. R. Aghamohammadi and A. Shahmohammadi, “Intentional islanding using a new algorithm based on ant search mechanism,” Int. J. Electr. Power Energy Syst., vol. 35, no. 1, pp. 138–147, Feb. 2012.
[20] B. Enacheanu, M. Fontela, C. Andrieu, H. Pham, A. Martin, and Y. B. Gie-Idea, “New control strategies to prevent blackouts: intentional islanding operation in distribution networks,” in 18th International Conference and Exhibition on Electricity Distribution (CIRED 2005), 2005, vol. 2005, p. 5.
[21] C. E. T. Foote et al., “A Power-Quality Management Algorithm for Low-Voltage Grids With Distributed Resources,” IEEE Trans. Power Deliv., vol. 23, no. 2, pp. 1055–1062, Apr. 2008.
[22] P. M. Costa and M. A. Matos, “Assessing the contribution of microgrids to the reliability of distribution networks,” Electr. Power Syst. Res., vol. 79, no. 2, pp. 382–389, Feb. 2009.
[23] E. Planas, A. Gil-de-Muro, J. Andreu, I. Kortabarria, and I. Martínez de Alegría, “General aspects, hierarchical controls and droop methods in microgrids: A review,” Renew. Sustain. Energy Rev., vol. 17, pp. 147–159, Jan. 2013.
[24] IEEE Power & Engineering Society, IEEE Guide for Electric Power Distribution Reliability Indices, vol. 2012, no. May. Institute of Electrical and Electronics Engineers, 2012.
[25] C. of E. E. Regulators, “CEER Benchmarking Report 5 . 1 on the Continuity of Electricity Supply Data update,” 2014.
[26] D. Committee, I. Power, and E. Society, IEEE Guide for Collecting , Categorizing , and Utilizing Information Related to Electric Power Distribution Interruption Events IEEE Power and Energy Society. Institute of Electrical and Electronics Engineers, 2014.
[27] A. Whitfield and T. Graham, “Electricity Networks Service Standards : An Overview,” 2014.
[28] F. P. Sioshansi, Future of utilities - utilities of the future : how technological innovations in distributed energy resources will reshape the electric power sector, Fereidoon. Walnut Creek: Elsevier, 2016.
[29] UPME, ASOCODIS, and MinMinas, “Informe Sectorial Sobre La Evolución De La Distribución Y Comercialización De Energía Eléctrica En Colombia,” UPME, Bogotá D.C., Colombia, 2011.
[30] R. Billinton and W. Li, Reliability Assessment of Electric Power Systems Using Monte Carlo Methods. Boston, MA: Springer US, 1994.
[31] IEEE Std 1547.4, IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems. Institute of Electrical and Electronics Engineers, 2011.
[32] D. Della Giustina, P. Ferrari, A. Flammini, S. Rinaldi, and E. Sisinni, “Automation of Distribution Grids With IEC 61850: A First Approach Using Broadband Power Line Communication,” IEEE Trans. Instrum. Meas., vol. 62, no. 9, pp. 2372–2383, Sep. 2013.
[33] N. Higgins, V. Vyatkin, N.-K. C. Nair, and K. Schwarz, “Distributed Power System Automation With IEC 61850, IEC 61499, and Intelligent Control,” IEEE Trans. Syst. Man, Cybern. Part C (Applications Rev., vol. 41, no. 1, pp. 81–92, Jan. 2011.
[34] Y. Simmhan et al., “Cloud-Based Software Platform for Big Data Analytics in Smart Grids,” Comput. Sci. Eng., vol. 15, no. 4, pp. 38–47, Jul. 2013.
[35] J. Peppanen, J. Grimaldo, M. J. Reno, S. Grijalva, and R. G. Harley, “Increasing distribution system model accuracy with extensive deployment of smart meters,” in 2014 IEEE PES General Meeting | Conference & Exposition, 2014, pp. 1–5.
[36] IEEE Standard, IEEE Standard for Interconnecting Distributed Resources With Electric Power Systems. Institute of Electrical and Electronics Engineers, 2003.
[37] Comisión de Regulación de Energía y Gas - CREG, Resolición 176. 2016, p. 251.
How to Cite
Marín-Jiménez, J., Carvajal-Quintero, S., & Guerrero, J. (2018, May 14). Island operation capability in the Colombian electrical market: a promising ancillary service of distributed energy resources. TecnoLógicas, 21(42), 169-185.
Research Papers