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Abstract 

This paper proposes a comparative analysis between regular and parallel versions of 

FISTA and Tikhonov-like optimizations for solving the EEG brain mapping problem. Such 

comparison is performed in terms of computational time reduction and estimation error 

achieved by the parallelized methods. Two brain models (high- and low-resolution) are used 

to compare the algorithms. As a result, it can be seen that, if the number of parallel 

processes increases, computational time decreases significantly for all the head models used 

in this work, without compromising the reconstruction quality. In addition, it can be 

concluded that the use of a high-resolution head model produces an improvement in any 

source reconstruction method in terms of spatial resolution.  

 
Keywords 

Parallelized Algorithms, optimization, brain mapping, electroencephalography. 

 
Resumen 

En este artículo se propone un análisis comparativo entre versiones regulares y en 

paralelo de métodos de optimización FISTA y Tikhonov, para resolver el problema de mapeo 

cerebral a partir de EEG. La comparación se realiza en términos de la reducción del tiempo 

computacional y el error de estimación obtenido por los métodos paralelizados. Dos modelos 

de cabeza con alta y baja resolución son usados para la comparación de los algoritmos. Como 

resultado se puede ver que, si el número de procesos en paralelo se incrementa, el tiempo 

computacional disminuye significativamente para todos los modelos de cabeza, sin 

comprometer la calidad de la reconstrucción. Adicionalmente, se puede concluir que el uso 

de un modelo de cabeza de alta resolución resulta en una mejora de cualquier método de 

reconstrucción en términos de la resolución espacial. 
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1. INTRODUCCIÓN 

 

The use of high-resolution models for 

brain mapping from 

electroencephalographic (EEG) signals is a 

desirable condition in the study of several 

pathologies or cognitive behaviours since 

they commonly provide a lower spatial 

error in brain activity localization 

[1]. However, high-resolution models imply 

the computation of large amounts of data 

and the inversion of high dimensional 

matrices. 

Over the last years, parallel computing 

has emerged as a solution for processing 

high-dimensional data [2]. This technology 

reduces the computational time required to 

perform computationally expensive data 

analyses by splitting the process into low-

dimensional sub-processes that are 

computed simultaneously. Consequently, 

parallel computing methods have been 

validated for solving optimization problems 

in fields such as networking [3], signal 

processing [4], machine learning [5], and 

even non-convex problems [6].   
Particularly, EEG brain mapping is 

formulated as a large ill-posed 

mathematically-undetermined inverse 

problem that is solved by imposing smooth 

and/or sparse constraints to the 

optimization problem [7], [8]. Thus, in the 

case of sparse brain mapping solutions 

(which are desirable for estimating brain 

activity where only some brain sources are 

active at a specific time instant), methods 

such as the Fast Iterative Shrinkage-

Thresholding Algorithm (FISTA) are 

commonly used [9]. On the other hand, 

when dealing with smooth brain activity, 

Tikhonov-like approaches are the standard 

as they provide a simple and trustworthy 

solutions to inverse problems [10].  

However, although parallel versions of 

both FISTA and Tikhonov-like inverse 

problem solutions have been widely used in 

several fields [11] and it has been 

demonstrated that the same solution is 

obtained using one or several simultaneous 

processes, their influence on EEG brain 

mapping approaches has not been 

previously studied.  
This paper proposes a comparative 

analysis between regular and parallel 

versions of FISTA and Tikhonov-like 

optimization methods for solving the EEG 

brain mapping problem. Such comparison 

is performed in terms of computational 

time reduction and spatial accuracy 

achieved by the parallelized methods. This 

article is organized as follows: Section 2 

describes the forward model decomposition 

and the solution using the parallel FISTA, 

as well as the parallel Tikhonov-like 

solutions based on the iterative solution of 

a L2-norm objective function. Finally, 

Sections 3 and 4 present the evaluation, 

discussion, and conclusions of the results 

in terms of computational time and 

relative estimation error. 

 

 

2. PARALLEL INVERSE PROBLEM  

 
2.1 Forward model 

 

The EEG simulation of a multivariate 

case can be described at a time instant 

as (1): 

 
𝑦 = 𝑀𝑥 (1) 

 

where 𝑦 is an 𝑚 × 1 vector describing 

the measurements of 𝑚 EEG electrodes at 

a time instant; 𝑥, an 𝑛 × 1 vector 

describing the brain activity at 𝑛 possible 

locations; and 𝑀, an 𝑚 × 𝑛 matrix called 

the lead-field matrix, which relates the 

neural activity inside the brain with the 

EEG signals. (1) can be rewritten as a sub-

set of block matrices (2): 

 

𝑦 = [𝑀1 ⋯ 𝑀𝑁] [
𝑥1

⋮
𝑥𝑁

] (2) 
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where 𝑀𝑗 is the 𝑗 − 𝑡ℎ matrix block of 

dimension 𝑚 × 𝑛1, being 𝑛1 =
𝑛

𝑁
 if 𝑛 can be 

written as an integer number 𝑁 of 𝑛1. 

 
2.2 Parallel FISTA method 

 

A parallel version of FISTA 

optimization, which can be used since the 

structure of the estimated brain activity 𝑥𝑘 

is sparse, is presented in [12]. The parallel 

FISTA algorithm is described by the 

following set of equations (3), (4), (5), (6): 

 

𝑥́ 𝑗 = 𝑥𝑘
𝑗

+ 𝑐𝑘(𝑥𝑘
𝑗

− 𝑥𝑘−1
𝑗

) (3) 

 

𝑤 = ∑ 𝑀𝑗𝑥́𝑗

𝑁

𝑗=1

 (4) 

 

𝑔𝑗 = (𝑀𝑗)
𝑇

(𝑤 − 𝑦) (5) 

 

𝑥𝑘+1
𝑗

= 𝑝𝑟𝑜𝑥𝜆‖∙‖1
(𝑥́𝑗 − 𝛿𝑘𝑔

𝑗
) (6) 

 

where 𝑘 = 1, ⋯ , 𝐾 is the iteration index; 

𝑥𝑘
𝑗
, the 𝑗 − 𝑡ℎ block activity computed in 

parallel processes, 𝑐𝑘 =
𝑘−2

𝑘+1
  and  

𝛿𝑘 =
1

𝑚𝑎𝑥(eig(𝑀𝑀𝑇))
 according to [11]; and 

𝑝𝑟𝑜𝑥𝜆‖∙‖1
, the proximal operator in terms of 

the ‖∙‖1 norm and the regularization 

parameter 𝜆 [13] defined as (7):  

 

prox𝜆‖∙‖1
(𝑥) = {

𝑥 − 𝜆, if 𝑥 < 𝜆 
0, if -𝜆<𝑥 < 𝜆
𝑥 − 𝜆, if 𝑥 > 𝜆

 (7) 

 

The resulting estimated activity is 

computed at the last iteration as (8):  

 

 

= [
𝑥1

⋮
𝑥𝑁

] (8) 

 

 

 

 

 

 

2.3 Parallel Tikhonov-like method 

 

This work proposes a parallel method 

for a Tikhonov-like solution as an 

extension of the parallel FISTA algorithm 

with a proximal operator based on the ‖∙‖2
2 

norm [11], as follows (8), (9), (10), (11), 

(12): 

 
𝑥́𝑗 = 𝑥𝑘

𝑗
+ 𝑐𝑘(𝑥𝑘

𝑗
− 𝑥𝑘−1

𝑗
) (9) 

 

𝑤 = ∑ 𝑀𝑗𝑥́𝑗

𝑁

𝑗=1

 (10) 

 

𝑔𝑗 = (𝑀𝑗)
𝑇

(𝑤 − 𝑦) + 𝜆2𝑥́𝑗 (11) 

 

𝑥𝑘+1
𝑗

= 𝑝𝑟𝑜𝑥𝜆‖∙‖2
(𝑥́𝑗 − 𝛿𝑘𝑔

𝑗
) (12) 

 

where 𝑘 = 1, ⋯ , 𝐾 is the iteration index; 

𝑥𝑘
𝑗
, the 𝑗 − 𝑡ℎ block activity computed in 

parallel processes; and 𝑝𝑟𝑜𝑥𝜆‖∙‖2
2, the 

proximal operator in terms of the ‖∙‖2
2 

norm. 

 

 

3.  RESULTS AND DISCUSSION 

 
3.1 Experimental setup 

 

Two high-resolution head models were 

studied in this work for evaluating the 

performance of the algorithms in regular 

and parallel implementations. The first 

model, named the New York head model, 

was used with 𝑛 = 2004 (2 k), 𝑛 = 10016 

(10 k), and 𝑛 = 74382 (75 k) sources and 

𝑚 = 230 EEG channels, as described 

in [14]. The second model, named the 

Belgian head model, was used with 𝑛 =
8000 (8 k), 𝑛 = 20000 (20 k), and 𝑛 = 70000 

(70 k) sources and 𝑚 = 69 EEG channels. A 

detailed description of the second model 

can be found in [14], [15]. A visual 

representation of both head models with 

their different numbers of sources is shown 

in Fig. 1.  
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Fig. 1. Visual representation of the New Yok (top) and Belgian (bottom) high-resolution head models.  

Source: Authors. 

 

Noticeably, as the neural activity is 

estimated at each vertex of the brain 

model, a higher spatial resolution (high 𝑛 

values) can reduce the spatial error that 

occurs when a low-resolution brain model 

is considered as a reference for an inverse 

problem solution. 

The computer processor used for the 

experiments is a 12-core Intel Xeon Silver 

4116 with 2.1 GHz of speed and 64 GB of 

RAM. The algorithms were implemented 

employing the Open Message Passing 

Interface (Open MPI). To this end, 

Equations (4) and (8) were solved by means 

of the MPI-ALLreduce function with the 

sum operator. It is worth mentioning that 

the GNU Scientific Library (GSL) was used 

for the calculations.  

In order to evaluate the performance of 

the algorithms, we propose the following 

simulation benchmark: A static active 

source placed in a random brain cortex 

location is simulated in both high-

resolution models with different numbers 

of sources, as shown in the first column of 

Fig. 2. For the sake of simplicity in the 

parallel implementations, here we only 

simulated a single time instant. Then, we 

reconstructed the brain activity using the 

FISTA and Tikhonov-like methods 

described in the previous sections with one, 

two, four, six, eight, ten, and twelve 

simultaneous processes. The number of 

parallel processes N was selected from one 

to twelve, which is the maximum number 

of cores of the computer processor used for 

the calculations. 

We used two performance 

measurements:  

i) Computational time (𝑡): It helps us to 

quantify the computational improvement 

achieved by the parallel solutions. Here, we 

measured the estimation time in seconds 

for the 500 iterations cycle used in 

Tikhonov, including the communication 

time among processes. In addition, a 

comparison of the algorithms, using the 

speedup measurement, is also included. 

ii) Relative error (𝑒): It evaluates if the 

parallel solutions worsen the brain activity 

estimation. This measurement is computed 

as (13): 

 

𝑒 =
||𝑥− 𝑥||2

||𝑥||2
, (13) 

 

where 𝑥 and 𝑥 are the 𝑛 𝑥 1 vector 

comprising the simulated and estimated 

brain activity. 
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Fig. 2. Simulated benchmark and examples of obtained reconstructions. 

Source: Authors. 

 

3.2 Results 

 

The performance of the algorithms, in 

terms of computational time, is shown in 

Fig. 3. In the latter, we notice a monotonic 

computational time reduction if the 

number of parallel processes is increased, 

regardless of the type of algorithm used to 

solve the inverse problem (namely, FISTA 

or Tikhonov-like). Moreover, we observe 

that the difference in the computational 

times with the three n values (considered 

when using a single process) is 

significantly reduced as the number of 

processes is increased.  

Specifically, with a single process, using 

n ≈ 70 k requires about four times the 

computational time needed for n ≈ 2 k, and 

about three times that for n ≈ 10 k. 

However, with 12 parallel  

processes, using n ≈ 70 k requires two 

times the computational time used for 

n ≈ 2 k or n ≈ 10 k. 

Furthermore, noticeably, the 

computational time required to solve the 

inverse problem using parallel processes 

for high-resolution models (namely, 

n ≈ 70 k) is equal to or even lower than 

that needed to solve the optimization with 

a single process for a reduced head model 

(namely, n ≈ 10 k). For example, the same 

reduced computational time is required to 

solve the inverse problem of a model with 

20 k sources implementing a single process 

or that of a model with 70 k sources 

implementing 4 or more parallel processes.  

This is a remarkable result since a 

high-resolution model of 70 k sources can 

be used instead of a model of 20 k sources 

in the same or even less computational 

time. In order to validate this result, an 

additional calculation, using the speedup 

measurement, is presented in Fig. 4. 

Moreover, to validate whether the 

parallel solutions deteriorate the source 

reconstruction quality, Fig. 5 shows the 

relative error for all the models considered 

in this work. From such Figure, we can 

note that the relative error does not 

depend on the number of parallel processes 

but on the number of sources of the head 

model. 



Comparative Analysis of Parallel Brain Activity Mapping Algorithms for High Resolution Brain Models 

TecnoLógicas, ISSN-p 0123-7799 / ISSN-e 2256-5337, Vol. 22, No. 46, Sep-dic de 2019, pp. 234-243 [239] 

 
Fig. 3. Performance of the FISTA and Tikhonov-like algorithms in terms of computational time with one or 

several processes for the New York and Belgian head models. Source: Authors. 

 

 
Fig. 4. Speedup measurement using the FISTA algorithm with models of 70 k and 75 k sources. Source: Authors. 
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Fig. 5. Relative error (%) of the proposed parallel algorithms for the New York head model with 2 k, 10 k, and 

75 k sources; and the Belgian model with 8 k, 20 k, and 70 k sources. Source: Authors. 

 

An additional example of the 

localization error reduction that can be 

obtained using high-resolution models can 

be seen in Fig. 6. The latter compares 

parallel FISTA and Tikhonov solutions for 

the Belgian head model with 8 k, 20 k, and 

70 k sources. By increasing the number of 

sources of the head model, the localization 

error is reduced since the distance between 

sources is lower in high-resolution models. 

This property is specially observed in 

the results of the parallel FISTA method in 

Fig. 3 and Fig. 5, where it is noticeable 

that, by using parallel processes for the 

solution of optimization problems, a 

reduction in computational load can be 

achieved. 

Therefore, the same computational time 

is required to solve a low-resolution model 

implementing one process or a high-

resolution model implementing several 

parallel processes; and the brain activity 

estimation error is not increased. 

The speedup measurement was used in 

order to validate the computational time 

results, especially for the models with 70 k 

and 75 k sources. Fig. 4 presents the 

speedup measurement of the FISTA 

algorithm. It can be seen that the speedup 

increases along with number of parallel 

processes. It is worth mentioning that, in 

order to compute the speedup 

measurement, 45 % of the code is 

parallelized. 



Comparative Analysis of Parallel Brain Activity Mapping Algorithms for High Resolution Brain Models 

TecnoLógicas, ISSN-p 0123-7799 / ISSN-e 2256-5337, Vol. 22, No. 46, Sep-dic de 2019, pp. 234-243 [241] 

 
Fig. 6. Comparison of location errors in the Belgian head model with different numbers of sources.  

Source: Authors 

 

4.  DISCUSSION 

 

This work presented a comparison 

between parallel and single-process 

solutions to the EEG inverse problem in 

high-resolution head models. Based on the 

performance results described above, the 

following findings are worth mentioning: 

Regarding the implemented 

optimization approach, as expected, FISTA 

produced a sparse solution, whereas 

Tikhonov-like methods tended to spread 

the reconstructed brain activity into the 

near neighborhood of the simulated source. 

However, the performance of Tikhonov-like 

solutions for higher-resolution models 

(namely, n = 20000) resembles that of their 

FISTA counterparts with a lower number 

of sources (n = 8000). As a result, high-

resolution models can improve the 

performance of any source reconstruction 

method. 

Further, regarding computational time, 

it is noticeable that the higher the model 

resolution, the longer the time required to 

solve the optimization problem. However, 

as the number of parallel processes 

increases, the computational time 

significantly decreases for all the head 

models used in this work, without 

compromising the reconstruction quality. 

As a result, parallel solutions to the EEG 

inverse problem improve the 

computational performance of the 

optimization process without distorting the 

estimated sources.   

According to the speedup measurements, 

this particular process clearly reaches a 

saturation point where the computational time 

stops decreasing. However, as the number of 

dipoles n and time samples T continue to 

increase (producing many more parameters to 

optimize), it will be necessary to use more 

parallel processes and computational 

resources to reduce, as much as possible, the 

time needed to solve the inversion task. 

 

 

5.  CONCLUSIONS AND FUTURE WORK 

 

In this paper, we compared the 

performance of parallel computing 

methods for solving the EEG brain 
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mapping problem. To this end, we used 

head models with different numbers of 

dipoles, ranging from approximately 2 k to 

70 k. Moreover, we solved the optimization 

problem using 1, 2, 4, 6, 8, 10, and 12 

parallel processes. The results 

demonstrate that head models with high 

numbers of dipoles can produce better 

representations of the brain without 

compromising the computational time used 

for solving the optimization task. 

As the aim of this work is to introduce 

parallel computing processes in order to 

solve the EEG inverse problem, we ignored 

the dynamic nature of EEG recordings, 

performing the source reconstruction of a 

single time instant. However, as future 

work, we will propose dynamic parallel 

solutions. 
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