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Abstract 

Classical image segmentation algorithms exploit the detection of similarities and 

discontinuities of different visual cues to define and differentiate multiple regions of interest 

in images. However, due to the high variability and uncertainty of image data, producing 

accurate results is difficult. In other words, segmentation based just on color is often 

insufficient for a large percentage of real-life scenes. This work presents a novel multi-

modal segmentation strategy that integrates depth and appearance cues from RGB-D 

images by building a hierarchical region-based representation, i.e., a multi-modal 

segmentation tree (MM-tree). For this purpose, RGB-D image pairs are represented in a 

complementary fashion by different segmentation maps. Based on color images, a color 

segmentation tree (C-tree) is created to obtain segmented and over-segmented maps. From 

depth images, two independent segmentation maps are derived by computing planar and 3D 

edge primitives. Then, an iterative region merging process can be used to locally group the 

previously obtained maps into the MM-tree. Finally, the top emerging MM-tree level 

coherently integrates the available information from depth and appearance maps. The 

experiments were conducted using the NYU-Depth V2 RGB-D dataset, which demonstrated 

the competitive results of our strategy compared to state-of-the-art segmentation 

methods. Specifically, using test images, our method reached average scores of 0.56 in 

Segmentation Covering and 2.13 in Variation of Information. 
 

Keywords 

Image segmentation, over-segmentation, RGB-D images, depth information, multi-modal 
segmentation. 
 

Resumen 

Los algoritmos clásicos de segmentación de imágenes explotan la detección de 

similitudes y discontinuidades en diferentes señales visuales, para definir regiones de 

interés en imágenes. Sin embargo, debido a la alta variabilidad e incertidumbre en los datos 

de imagen, se dificulta generar resultados acertados. En otras palabras, la segmentación 

basada solo en color a menudo no es suficiente para un gran porcentaje de escenas 

reales. Este trabajo presenta una nueva estrategia de segmentación multi-modal que 

integra señales de profundidad y apariencia desde imágenes RGB-D, por medio de una 

representación jerárquica basada en regiones, es decir, un árbol de segmentación multi-

modal (MM-tree). Para ello, la imagen RGB-D es descrita de manera complementaria por 

diferentes mapas de segmentación. A partir de la imagen de color, se implementa un árbol 

de segmentación de color (C-tree) para obtener mapas de segmentación y sobre-

segmentación. Desde de la imagen de profundidad, se derivan dos mapas de segmentación 

independientes, los cuales se basan en el cálculo de primitivas de planos y de bordes 

3D. Seguidamente, un proceso de fusión jerárquico de regiones permite agrupar de manera 

local los mapas obtenidos anteriormente en el MM-tree. Por último, el nivel superior 

emergente del MM-tree integra coherentemente la información disponible en los mapas de 

profundidad y apariencia. Los experimentos se realizaron con el conjunto de imágenes RGB-

D del NYU-Depth V2, evidenciando resultados competitivos, con respecto a los métodos de 

segmentación del estado del arte. Específicamente, en las imágenes de prueba, se obtuvieron 

puntajes promedio de 0.56 en la medida de Segmentation Covering y 2.13 en Variation of 

Information. 
 

Palabras clave 

Segmentación de imágenes, sobre-segmentación, imágenes RGB-D, información de 

profundidad, segmentación multi-modal. 
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1. INTRODUCTION 

 

Segmentation is a well-known, 

challenging problem in computer 

vision. State-of-the-art research has 

traditionally tackled this problem using 

appearance data and analytical models for 

the integration of global and local color 

cues in order to define object boundaries 

[1], [2]. 

Nonetheless, the performance of these 

approaches remains limited because of the 

diversity and ambiguity of natural images. 

Typical segmentation, therefore, often 

results in either over-segmented (the 

image is divided into too many regions) or 

under-segmented scenes (too few regions), 

as illustrated in Fig. 1.  

Recently, the emergence of RGB-D 

cameras has improved the 3D geometry 

analysis of indoor scenarios by capturing 

depth information [3]. This knowledge 

enriches and complements visual cues by 

enabling the grouping of coherent regions 

from structural 3D data. Several strategies 

have taken advantage of depth geometry 

for segmentation applications [4]–[6]; 

however, merging visual and geometrical 

cues in such methods requires the tuning 

of a large number of internal parameters 

that increase computational complexity. 

For instance, a volumetric superpixel 

representation of target images was 

computed in [4], from which a final 

segmentation was obtained by merging 

regions based on similarity levels. The 

NYU-Depth V2 (NYUD2) dataset was 

implemented in that study, but with a 

large collection of RGB-D images that 

capture diverse indoor scenes. 

Alternatively, to capture a variety of 

color and depth features, kernel 

descriptors have been used on different 

over-segmentations [5], followed by a 

region grouping through a Markov 

Random Field context model.  

Their representative results were 

outperformed in [6], which generalized the 

hierarchical appearance-based 

segmentation in [1], where color, texture 

and 3D gradients were combined in 

different scales. In such study, semantic 

segmentation is also performed using a 

machine learning algorithm that classifies 

the regions of images in the NYUD2 

dataset into 40 dominant object categories 

[7], [8].  

Other approaches propose to cluster 

RGB-D data with a subsequent globally-

optimal segmentation applying graph 

theory [9], [10]. These methods compute 

joint color and 3D features, which make 

them highly dependent on the calibration 

that matches both data types. Despite 

several advances in multi-modal 

segmentation aimed at the integration of 

depth maps, the use of these 

complementary sources remains 

challenging due to missing 

correspondences between depth points and 

RGB pixels, often produced by multiple 

reflections, transparent objects, scattering, 

and occlusions [11], [12]. In general, multi-

modal segmentation should be completed 

independently since fusing color and depth 

information from low-level perspectives 

might impose additional requirements on 

the registration and coherence of scene 

pixels. 

In addition to classical schemes, 

learning-based methods have become much 

more popular in recent years due to their 

improved performance [13]–[15].  

Their main limitation is the extensive 

need of massive amounts of labeled data to 

achieve proper object 

modeling. Furthermore, such strategies 

train closed models with a lot of hyper-

parameters linked to the source data 

format, thus limiting their flexibility to 

incorporate new segmentation 

cues. Moreover, learning-based 

segmentation commonly addresses the 

problem from a higher level, in which a 

category object prediction is the most 

relevant task. 



Multi-modal RGB-D Image Segmentation from Appearance and Geometric Depth Maps 

[146]  TecnoLógicas, ISSN-p 0123-7799 / ISSN-e 2256-5337, Vol. 23, No. 48, mayo-agosto de 2020, pp. 143-161 

 
a) 

 
b) 

Fig. 1. Under- and over-segmentation. (a) Segmentation using the superpixel graph algorithm in [7]; in this case, 

the algorithm fails to differentiate the curtain from under the sink cabinet, clearly because of its close color 

similarity. (b) Segmentation by statistical region merging [8], where color and light variations cause a noticeable 

over-segmentation of the wall and the blanket. Source: Created by the authors. 

 

In contrast, in this work, we are 

interested in finding region proposals by 

explicit boundary integration of both depth 

and appearance sources of information, 

which does not require intense training 

procedures. It is important to note, 

however, that such segmentation results 

are commonly used as input of learning-

based methods, which can perform object 

detection and classification based on 

multiple image segments. Therefore, 

throughout this paper, we do not consider 

a comparison of our method with learning-

based methods, but we do highlight the 

importance of generating good region 

proposals to follow subsequent steps of 

semantic image understanding. For a more 

detailed discussion on learning-based 

methods, see [16]. 

This paper presents a multi-modal 

segmentation framework that integrates 

independent appearance and depth 

segmentation maps in a multi-modal 

segmentation tree (MM-Tree) by means of 

hierarchical region merging process [17]. 

The principal contribution is the 

definition of a coherency term that enables 

the consensus merging of color and depth 

information into the MR-tree structure. In 

contrast to previous approaches, we start 

the segmentation pipeline by processing 

both color and depth channels separately. 

On the one hand, a color segmentation 

tree (C-tree) allowed us to obtain two 

appearance-based segmentation maps. On 

the other hand, we computed planar and 

3D edge segmentation maps only from 

depth data in order to encode geometrical 

object information, thus achieving a better 

global shape description. Then, by building 

the proposed MM-tree representation, 

independent segmentation maps can be 

hierarchically merged following a general 

agreement metric between segmented 

regions. Such process is carried out 

iteratively, thus enabling us to generate 

different tree levels that integrate 
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irregular shapes with semantic object 

coherency. In particular, a higher 

confidence level was assigned to depth 

maps because of their robustness in 

describing the global shape of objects, 

while the appearance maps are mostly 

useful to locally regularize the contours of 

segmented regions. As a result, the top 

level of the MM-tree hierarchy recovers 

and coherently integrates the available 

information from each color and depth 

channel in RGB-D images, allowing a more 

tractable analysis of such multi-modal and 

independent sources. An evaluation of our 

approach using the public NYUD2 dataset 

[4] shows its competitive performance in a 

wide range of scenes, outperforming state-

of-the-art color segmentation approaches. 

 

 

2. PROPOSED APPROACH 

 

In this work, we present a multi-modal 

strategy to segment scene regions by 

integrating independent geometrical depth 

and appearance maps into a multi-modal 

tree structure, namely, the MM-tree.  

The general pipeline we propose is 

illustrated in Fig. 2. In it, part subfigure 

(a) shows the color-based tree 

representation (C-tree) that was 

implemented to manage different 

granularity scales from color space. From 

this C-tree, a first over-segmented map (C-

over-segmentation) was generated as basis 

map for the region merging, that is, a 

primary layer. A more compact appearance 

segmentation was also obtained as support 

layer (C-segmentation) for further fusion 

support of the color space. Regarding depth 

information, Fig. 2 b) presents the main 

steps to generate the geometrical depth 

maps. Here, conventional pre-processing 

steps were followed to align color and 

depth data and generate 3D point clouds 

[18]. Subsequently, two independent 

support layers were obtained: (1) a 3D-edge 

segmentation layer and (2) a planar 

segmentation layer. Then, the proposed 

MM-tree was built from such primary and 

support layers, as shown in Fig. 2 c). 

This computation allows us to 

iteratively fuse segmentation maps from 

the proposed color and depth layers. The 

process is done by merging adjacent 

regions on the primary layer applying a 

similarity support layer criterion [17]. The 

computations of the primary and support 

segmentation layers, as well as the MM-

tree structure, are described individually 

in the following subsections. 

 
2.1. Color Segmentation Tree: C-tree 

 

In this study, a first pair of 

segmentation maps are obtained from color 

cues by using the widely recognized 

hierarchical scheme in [1]. Such approach 

mainly consists in the combination of two 

components: the Global Probability 

Boundaries (gPb) algorithm [19] and the 

Oriented Watershed Transform and 

Ultrametric Contour Map (OWT-UCM) 

framework [20]. The gPb algorithm is 

basically a contour detector that exploits a 

multi-scale image representation from 

brightness, color, and texture. The OWT-

UCM framework transforms any contour 

signal into a hierarchy of regions while 

preserving contour quality. Each region 

has an associated relevance according to 

the bounds of the weighted edges. From 

such representation, we can build an 

appearance-based segmentation tree with   
levels associated to the prevalence of the 

image edges. Therefore, several maps with 

different granularities can be generated by 

changing the value of  .  In our pipeline, 

such tree is called the C-tree (see Fig. 2 

(a)), from which two outputs are 

computed: (1) an over-segmented map, 

namely C-over-segmentation, i.e., the 

predetermined primary layer of the 

proposed MM-tree, and (2) a typical color 

segmentation map, referred to as C-

segmentation, which is used as a 

supporting layer of the proposed MM-tree. 
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a) 

 
b) 

 
c) 

Fig. 2. Workflow of the proposed multi-modal segmentation. (a) Color segmentation tree: C-tree (section 2.1).  

(b) Geometrical depth maps (section 2.2). (c) Multi-modal segmentation tree: MM-tree (section 2.3). Different 

segmentations are obtained from depth and color data. This information is incorporated as support layers into a 

multi-modal tree structure that starts from an over-segmented image in color space, that is, the primary layer.  

A final segmentation is obtained from the last MM-tree level. Source: Created by the authors.  
 

The C-over-segmentation layer is the 

most granular map, considered as a 

primary layer due to its role as the first 

level of the MM-tree, which can initialize 

the region merging process with many 

fusion possibilities (see Fig. 2 (c)). In turn, 

the C-segmentation layer, with 

considerably fewer regions, introduces an 

additional support layer to lead the 

regional agreement alongside the proposed 

depth maps (see Fig. 2 (b)). For the sake of 

simplicity, throughout this paper, we will 

just adopt the gPb term when referring to 

the whole gPb-OWT-UCM scheme [1], 

hereafter referred to as the gPb algorithm. 

 
2.2. Geometric Depth Maps 

 

As complementary information, we 

considered depth primitives computed from 

the projected 3D point distribution of the 

depth image, namely, the 3D point cloud 

[18]. Specifically, two different 

segmentations based on 3D-gradients and 
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extracted planar surfaces were considered 

as support layers. The description of such 

layers is presented in the next subsections. 

 
2.2.1. 3D-edge Segmentation 

 
Edge information was used to describe 

3D discontinuities and changes in surface 
orientations. In this study, a coarse 
geometrical scene segmentation was 
achieved by firstly computing 3D gradients 
from the 3D point cloud, as shown in Fig. 2 
(b). For this purpose, we implemented the 
approximated model of 3D-edge detection 
proposed in [6]. Hence, we identified three 
types of contour signals: (1) a depth 
gradient   , which represents the 
presence of depth discontinuities; (2) a 
convex normal gradient    , which 
captures if the surface bends outward at a 
given point in a given direction; and (3) a 
concave normal gradient    , capturing if 
the surface bends inward. In the next step, 
in order to generate a compact 
representation by a general contour signal, 
we defined a simple addition of the three 
gradient cues as:               . 

Fig. 3 is a set of examples of these types 
of gradients. Subsequently, by using the 
OWT-UCM framework [20] (see section 
2.1), which works on any contour signal, 
we obtained a depth segmentation tree 
from the general 3D gradient    . Such 
tree yields different 3D-edge segmentation 
resolutions according to a tree level 
         . In this paper, K_3D was set 
experimentally (see section 3.3). 

2.2.2. Planar Segmentation 

 
A planar surface representation [21], 

[22] was also considered in this study to 
complement the 3D structure description 
from 3D edges. This representation can be 
used to code geometrical planes into a 
segmentation input layer of the MM-tree 
process to better describe different scene 
perspectives. For that purpose, the 
algorithm starts with a fully dense graph 
representation that splits the 3D point 
cloud into uniforms partitions. Then, graph 
nodes are clustered to obtain   planar 
regions             . An agglomerative 
and hierarchical clustering (PAHC) [21] 
machinery then iteratively finds the best 
planes that fit the scene by minimizing the 
mean squared error between points. Such 
regions are merged with neighbors that 
satisfy the MSE criteria. Finally, a pixel-
wise region growing is performed to refine 
the boundaries of the clustered plane 
regions. The PAHC strategy is robust for 
detecting planes in diverse scenarios from 
different perspectives and with important 
object variations. Besides, such strategy is 
computationally efficient, achieving real-
time performance with remarkable 
accuracy in the state-of-the-art. This 
planar representation is fundamental in 
the proposed approach, providing 
complementary information that allows 
the algorithm to differentiate objects 
according to the perspective of the shot.  
 

 

 

 

 
Fig. 3. Gradients from depth map. (a) Original image. (b) Depth gradient. (c) Convex normal gradient. (d) 

Concave normal gradient. (e) Sum of gradients. Source: Created by the authors. 
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2.3 Multi-modal Segmentation Tree:  MM-tree 

 

In this paper, we propose a multi-modal 

segmentation tree (MM-tree) that 

leverages depth and appearance 

segmentation maps through a hierarchical 

region merging step (HRM) [17]. The 

process is illustrated in Fig. 4. The HRM 

starts from the C-over-segmentation 

(section 2.1) as a primary layer of the MM-

tree, represented by 

   {                  } with   disjoint 

regions. Each one of these regions is a set 

of neighbor pixels with shared similarities 

in visual cues, such as color, brightness, 

and texture. Additionally, we defined a set 

of supporting layers       as follows: (1) C-

segmentation (section 2.1) as      , (2) 3D-

edge segmentation (section 2.2.1) as      , 
(3) the planar segmentation (section 2.2.2) 

as      . 
The support layers       encode coarse 

regions that guide the merging process of 

small regions in the primary layer   . Each 

      consists of   different image regions 

      
    

      
      

  , generally with 

   . At each step of the HRM, two 

adjacent regions on the primary layer 

         are considered, with a total 

cardinality of |  |  |  | pixel pairs. Such 

region pair is spatially projected on a 

particular matching region   
  on each 

support layer    in order to assess 

coherency across depth- and appearance-

based maps. This coherency is measured 

by means of an overlapping rule between 

         (see Fig. 4 (b)), which is 

mathematically expressed in (1) as the 

joint similarity         . 

The first term in (1),         , is a 

cross-region evidence accumulation 

(CREA). This term measures the coherency 

between two adjacent regions         on 

the primary layer    w.r.t. spatially 

coincident regions   
  over the three 

supporting layers   .    then contributes to 

the merging of         by taking into 

account its overlapping percentage across 

each   , under the assumption that they 

may represent the same entity, mostly in 

terms of depth (as it can be noted in the 

use of two supporting depth maps and only 

one color map). For instance, the maximum 

value of    is reached on a particular 

support layer when the whole pixel 

distribution of    and     concur in   
 . 

Otherwise, if only part of the pixels 

intersects   
 , a partial coherency is 

obtained w.r.t. the number of overlapping 

pixels and the two region sizes. In general, 

the    similarity score has a major depth 

weight on the final regional merging 

decision, since the definition of coarse 

object shapes is better reflected in the 

respective depth maps.  

 
 (     )                  (1) 

 

where 
 

   
 

 
∑ ∑

|  |  |  
 |  |  |  |  

 |

|  |  |  |

 

   

 

   

 

 

     
 

 
∑

*   
       

   +
 

   
       

   

  

   

 

(2) 
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Fig. 4. (a) MM-tree generation. A hierarchical region merging process starts from the primary layer   . At each 

iteration, a pair of regions          are merged based on a set of similarity measures   (     )   over all 

adjacent region pairs. This merging creates a new level in the MM-tree. (b) Similarity calculation between 

adjacent region pairs. From   , regions       are evaluated in terms of two metrics: (1) the cross-region evidence 

accumulation          , which considers the overlapping of       over the three supporting layers       

                   , and (2) the appearance similarity          , which only considers the color distribution on 

     . These metrics define how the merging is carried out and are summarized into a joint similarity         . A 

final segmentation in the MM-tree can be obtained by specifying a threshold      for          

 Source: Created by the authors. 

 

The second term,         , adds an 

appearance similarity consideration by 

computing a local histogram 

representation       of each compared 

region. For this purpose, we obtain a CIE-

Lab color histogram where    is the 

number of histogram bins. Then, a 

similarity rule is adopted according to the 

chi-squared distance    of adjacent region 

histograms     
    

  [1]. The appearance 

confidence is then calculated by locally 

measuring the    distance and weighting it 

by the sum of its respective bins (it must 

be equal). Therefore, close large bins will 

represent a close region similarity, being 

robust to the noisy information of small 

bins. 

Finally, the parameter          allows 

the method to regularize the contribution 

percentage of the appearance similarity   . 

Thus, by using (1) as a similarity region 

rule, the HRM is carried out in an iterative 

manner to gradually build the MM-tree. 

Specifically, at each iteration, the two 

regions with the highest          are 

merged into a new, larger region. This 

creates a new tree level where the number 

of regions has decreased by one. The MM-

tree structure then codes new 

segmentation levels with new region 

associations (see Fig. 4 (a)). A similarly 

stopping criterion      defines the selection 

of a specific MM-tree level as the final 

segmentation. That is, if, from the whole 

region distribution in   , there are no 

remaining adjacent region pairs with 

significant joint similarity  , the algorithm 

completes a final segmentation and the 

iterative process must stop. 

In this paper, we propose a multi-modal 

tree representation (MR-Tree) that 

hierarchically integrates seminal 

segmentations obtained from color and 

depth information. The MR-tree generation 

process is based on a previous approach 

that operates only on the RGB space [17], 

integrating several over-segmented layers 
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into an appearance-based tree. That 

classical appearance tree uses redundant 

information over different spatial scales to 

recover object shapes. Nevertheless, as a 

traditional RGB approach, it misses 

additional and complementary information 

from geometrical depth cues. In contrast, 

the proposed approach achieves a multi-

modal integration by projecting 

appearance granular regions on coarse 

depth segments. Also, a regularization 

term defines additional appearance 

support. In that way, the regional 

coherence in RGB-D images is strongly 

influenced by depth information. 

Therefore, a complex texture 

computation, originally considered in [17], 

was removed due to its noisy distribution 

in natural and cluttered scenes. 

 

 

3. EXPERIMENTAL SETUP 

 
3.1 Dataset and Implementation Details 

 

The proposed strategy was evaluated 

on the public NYUD2 dataset [4], which is 

composed of 1,449 RGB-D images and their 

corresponding ground truth segmentations. 

The images capture diverse indoor 

scenarios of private apartments and 

commercial accommodations. The NYUD2 

dataset is very challenging due to its high 

scene variability, numerous and cluttered 

objects, and multiple perspectives. Two 

image subsets were extracted for the 

evaluation steps in this study: Tuning set 

and Test set. For tuning experiments 

(section 3.2), the tuning set contained 290 

randomly selected images (20 % of the total 

dataset). For the quantitative performance 

evaluation (section 4.2), we used the 

remaining images, that is, 1159 pictures. 

The experiments were conducted in  64-

bit MATLAB R2016b (Ubuntu Linux) on a 

workstation with an Intel Core i7 CPU (4 

cores, 8 threads) processor and 32 GB of 

RAM. MATLAB libraries Image Processing 

and Computer Vision toolboxes were 

required. The specific state-of-the-art 

segmentation algorithms used as 

components of this study, as well as those 

used for comparison, are original 

implementations by the authors in 

MATLAB software.  

The execution time of the complete 

pipeline for segmenting a single image was 

282.6 seconds on average, which mostly 

depends on the complexity and number of 

objects in the imaged scene. This overall 

duration covers 4 steps with the following 

typical individual times: 121.1 sec (C-tree, 

section 2.1), 32.6 sec (3D-edge 

segmentation, section 2.2.1), 0.14 sec 

(planar segmentation, section 2.2.2), and 

128.8 sec (MM-tree, section 2.3). 

 
3.2. Performance Measures  

 

Three standard metrics were selected to 

quantitatively evaluate the performance of 

the segmentation results compared with 

human ground truth: Segmentation 

Covering [23], Rand Index [24], and 

Variation of Information [25]. 

 
3.2.1. Segmentation Covering 

 

Segmentation covering has been widely 

used for comparing the similarity of 

segmented regions with respect to ground-

truth labels [23]. Specifically, this metric 

quantifies the level of overlapping between 

the estimated region   and the ground-

truth region   , defined by (3) as: 

 

        
 

 
∑ | |            

|    |

|    |
     

 (3) 

 

where   denotes the total number of 

pixels in the image and a value of 1 

indicates perfect covering. Therefore, the 

segmentation is considered better as   

approaches 1. 
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3.2.2 Rand Index 
 

Let us consider two segmentations   

and   of   pixels               that assign 

labels      and    
  , respectively, to a pixel 

  . The Rand Index    can be computed as 

the ratio of the number of pixel pairs 

having the same label relationship in   and 

  [25].  

Such ratio is then defined by (4). Where 

  is the identity function and (
 
 
) is the 

number of possible unique pairs among   

pixels. This gives us a measure that 

quantifies the fraction of pixel pairs whose 

labels are consistent between   and  . 

And, as in the case of (2), its maximum 

value is 1 when the two segmentations are 

actually the same. 

 
3.2.3. Variation of Information 

 

The Variation of Information (VI) is a 

global measure of the distance between 

two clusters of data from a combination of 

entropy ( ) and mutual information ( ) 
indexes [25]. In this case, the metric is 

defined as the distance between estimated 

( ) and ground truth ( ) segmentations, 

expressed in a simplified form in (5): 

 

                                (5)  

 

Regarding this metric, unlike in (2) and 

(3), values close to zero indicate greater 

similarity since it is an error 

quantification. 

 
3.3 Parameters Tuning  

 

The experimental setup of this study 

required a final step: assessing the effect of 

the main parameters on the performance 

of our method. For this purpose, we 

performed a grid search over parameters 

   ,   , and     . From that analysis, it 

was possible to analyze the contribution of 

each perceptual cue to the segmentation 

process, namely, 3D-edges (   ), 

appearance and CREA similarity (  ), and 

RGB-D segmentation tree granularity 

(    ). The grid search was performed as a 

different tuning experiment for each of the 

parameters mentioned above. 

Tuning experimentation was then 

carried out on a randomly selected image 

subset of 290 images (20 % of the total 

dataset). The results we obtained are 

detailed below. 

 
3.3.1 3D-edge Segmentation Level 

 

    is the tree level that yields the 3D-

edge segmentation from 3D gradients (see 

section 2.2.1). This support layer 

represents the main cue from depth data to 

be fused with appearance information. As 

shown in Fig. 5 (a), the best covering score 

for the 3D-edge segmentation was achieved 

at         , which corresponds to 

gradient maps with few object details and 

thus removing small noisy image artifacts. 

 
3.3.2. Trade-off between Appearance and 
CREA Similarities 

 

The    parameter weights the 

importance of appearance and CREA 

similarity metrics from depth and color 

information (see section 2.3). Fig. 5(b) 

presents results for different values of this 

parameter. The best performance was 

observed at the peak of       , which 

highlights the importance of a balanced 

trade-off between appearance and depth 

fusion. 

 

 

         
 

(
 
 
)
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3.3.3 Stopping Criterion for the MM-tree 

 

The parameter      controls the 

stopping criterion for the MM-tree 

computation to return a final segmentation 

(see section 2.3). Such parameter was fixed 

at           for the previously 

highlighted    value, as it represents the 

best covering point and the merging of 

adjacent regions with a joint similarity 

greater than 0.59 (see Fig. 5 (b)).  

This result is a reasonable value since 

it is approximately a 60 % probability of 

being the same region according to the 

integrated appearance and depth 

segmentations.

 

 
a) 

 

b) 
Fig. 5. Parameter selection. We performed a parameter tuning of the main components of our methodology: (a) 

3D-edge segmentation granularity (   ). (b) Appearance and CREA similarity contributions (  ) and the final 

segmentation granularity on the MM-tree level as a function of the      stopping criterion. Subfigure (a) shows 

the average covering score of the 3D-edge segmentation as a function    . Values within the interval            
suggest a low detailed gradient map; this is the best option to support segmentation. Subfigure (b) indicates that 

the consideration of both modalities via the CREA    and appearance    similarities (see Equation (1)) improves 

segmentation results, that is,     . Note that the stopping criterion                 yields the best 

segmentation results at       . Source: Created by the authors. 
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4. EXPERIMENTS AND RESULTS  

 
Four state-of-the-art approaches were 

considered for comparison. These 
strategies include widely recognized color-
only frameworks such as Statistical Region 
Merging [8] (referred to as Nock, its 
creator’s last name), Full Pairwise 
Affinities for Spectral Segmentation [26] 
(referred to as MLSS, as in the original 
paper), and Global Probability Boundaries 
[1] (referred to as gPb, as explained in 
section 2.1), as well as the top performing 
color-plus-depth approach in [6] (referred 
to as gPbD since it is a generalized version 
of the gPb algorithm). For a fair 
comparison, the parameters of the Nock, 
MLSS, and gPb approaches were tuned 
based on the segmentation covering scores 
on the tuning set. The same parameters on 
the same dataset reported in [6] were used 
here for gPbD. 

 
4.1 Qualitative Evaluation  

 

A qualitative analysis of five sample 

scenes is presented in Fig. 6. The first 

column presents the original image input. 

Ground truths are on the second 

column, and the next three columns report 

a baseline evaluation performed with 

MLSS [23], gPb [1], and gPbD [6], 

respectively.  

The last column shows the final 

segmentation result achieved in this study. 

In almost all the images, the proposed 

approach performs a robust scene 

segmentation by integrating depth and 

appearance information. Some local and 

specific drawbacks are reported because of 

the sensitivity of the computed features 

and the integration of initial region 

proposals, restricted to a color base layer. 

Also, in some cases, strong light 

intensity can affect the results (fifth row). 

Particularly, in the images in the first 

and fourth row, our strategy yields better 

results than other baseline techniques due 

to its capability to exploit and properly 

code depth information. In the third and 

fifth rows, as well as the first, a richness of 

small scene objects can be noticed, a 

particularly challenging problem for most 

non-supervised strategies. 

 

 
Fig. 6. Sample images and their segmentations. From left to right: input image, ground truth, MLSS [23], gPb 

[1], gPbD [6], and proposed segmentation. Source: Created by the authors.  
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4.2 Quantitative Evaluation  

 

We carried out a quantitative 

evaluation of the proposed approach and 

the baseline strategies compared to human 

ground truth delineations in the testing set 

(1159 images) by implementing the 

benchmarks/metrics detailed in section 3.2. 

Fig. 7 shows the performance obtained 

using the Segmentation Covering 

evaluation. We achieved the best results, 

in terms of overlapping, with an average 

accuracy of       (black asterisk in the 

box plot). This performance was mostly due 

to the proper integration of depth 

geometrical features that allowed a better 

identification of objects categorized on the 

same plane. Such extra depth cue was also 

exploited by the gPbD algorithm, but it 

needed many additional computational 

resources to segment the objects. Despite 

small numerical differences, compared to 

gPbD, our segmentation pipeline is simpler 

and more flexible in introducing new 

geometrical and appearance features 

without changing the general 

computational framework. In contrast, 

color-only strategies over-segment images 

and tend to split objects into small 

instances because of the high light 

variability and multiple color distribution 

in the captured scenes. In such cases, 2-

dimensional edges are considerably noisy 

and cannot support object geometries. 

Fig. 8 presents the general scores of the 

approaches evaluated here using the Rand 

Index. Our score can be summarized as a 

mean value of 0.907, being slightly lower 

than that of the gPbD method (0.914), 

without statistically significant differences. 

The best performance was also achieved 

with both depth-aware strategies, with 

even more compact results regarding 

quartile score distribution. The proposed 

segmentation results are competitive 

thanks to the coding of plane and 3D-edge 

features, but numerous mistakes are 

produced by the incorrect labeling of tiny 

scene objects that share the same plane or 

have negligible edge discontinuities. In 

turn, the color-based strategies exhibited a 

lower performance, except for the gPb 

approach (  0.89), but with a larger 

variance in the results. The MLSS 

approach, in contrast, achieves a more 

compact RI variance with an average 

accuracy of 0.892, exceeding the gPb 

average but with the drawback of 

requiring the number of desired segmented 

regions. 

Finally, Fig. 9 reports the results of the 

metric Variation of Information. In it, the 

proposed approach achieves the lowest 

score, with an average of 2.13, while gPbD 

reached 2.36 with larger score variance 

(see Fig. 9). Regarding color-based 

strategies, MLSS achieved the best 

performance. In general, the proposed 

segmentations achieve competitive results 

with respect to the widely known gPbD 

scheme, which also involves depth 

information but with more complex joint 

definitions and relationships of data 

primitives. In contrast, this study is 

focused on the computation of simple yet 

robust primitives from image and depth 

channels, treated and coded independently. 

A hierarchical and iterative merging 

allow us to efficiently integrate such 

primitives and obtain a relatively coherent 

scene grouping. As shown in the previous 

results, the use of depth primitives is a 

clear advantage to face the challenging 

problem of image segmentation. 
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Fig. 7. Performance comparison between state-of-the-art and proposed segmentations in terms of Segmentation 

covering ( ). Higher values indicate better segmentation. Note that the score obtained with the proposed 

strategy is competitive because it is higher than that of the other techniques. Source: Created by the authors. 

 

 
Fig. 8. Performance comparison between state-of-the-art and proposed segmentations in terms of Rand Index 

(  ) Higher values indicate better segmentation. Here, the score of the proposed segmentation is slightly lower 

than that of the gPbD scheme, but the performance remains better w.r.t. RGB approaches 

Source: Created by the authors. 
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Fig. 9. Performance comparison between state-of-the-art and proposed segmentations in terms of Variation of 

Information (  ). Lower values indicate better segmentation. Note that the score obtained with the proposed 

strategy in this scenario is competitive because it is lower than that of the other techniques  

Source: Created by the authors. 

 

5. DISCUSSION AND CONCLUDING 

REMARKS 

 

RGB-D image segmentation is a field in 

continuous development with powerful and 

interesting advantages that allow us to 

deal with several applications limited by 

the use of color relationships only.  

For instance, the problem of object 

detection is very challenging when objects 

share a lot of key features in appearance 

space and also present a wide variability 

due to differences in perspective, capture, 

and illumination conditions. With the 

availability and leverage of depth 

information, such issues can be 

significantly reduced. In this study, we 

presented a novel RGB-D segmentation 

strategy based on the integration of color 

and depth information. A key difference of 

the proposed method with respect to state-

of-the-art approaches is the analysis of 

color and depth data in an independent 

manner, before performing the fusion of 

both information sources. To this end, we 

incorporated consensus clustering 

algorithms [27] into the segmentation 

process, which aims to combine a set of 

different clusters to find a more accurate 

one. The proposed method achieved 

competitive results on the NYU-Depth V2 

dataset with respect to three relevant 

segmentation metrics in the 

literature: Segmentation Covering, Rand 

Index, and Variance of Information. 

Remarkably, the proposed approach 

only requires visual and depth information 

without any prior labelling in order to deal 

with regional segmentation. In that sense, 

this study can be used as a starting point 

for more sophisticated approaches, such as 

visual component regularization, in order 

to achieve more effective and faster 

segmentations. 

The planar and 3D edge maps 

computed from depth information 

supported coherent object segmentation 

tasks, according to results reported on the 

public dataset evaluated here. In that 

sense, the proposed approach is robust 
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compared to the baseline depth gPbD 

scheme [6]. The computation of 

independent geometrical cues leverages 

important patterns to perform 

segmentation in depth space, without the 

noisy color components. Also, the use of 

independent geometrical cues avoids the 

computation of joint color and 3D features, 

as done in previous studies [4], [6], [10], a 

task that involves too many parameters 

and is difficult to tune and normalize for 

different natural scenes. Note, however, 

that the contribution of depth information 

depends on well-defined geometry features 

and the plane of capture for some fine-

detailed objects. In such cases, it might be 

necessary to develop additional 

alternatives that could adaptatively adjust 

the weight of depth cues in the observed 

scene. In several cases, the sparse nature 

of planes and intrinsic object 

representation could introduce local 

segmentation errors. As RGB-D acquisition 

technologies continue to improve, 3D data 

is expected to achieve a more precise 

capture of local geometric information, 

which should naturally yield improved 

segmentation results. 

The proposed approach, non-supervised 

in nature, can serve as input for 

supervised frameworks. Currently, most 

segmentation schemes take advantage of 

learning-based strategies that learn 

complex parametric models from hand-

labeled images in massive datasets. 

Training these approaches is 

computationally expensive and limited in 

terms of incorporating new perceptual cues 

for segmentation improvement, as required 

with emerging technologies in multi-modal 

sensors. Conversely, the proposed pipeline 

has potential for multi-modal cue 

integration and can contribute as a 

primary step to automatically segment 

coherent regions that can be evaluated by 

more sophisticated learning-based 

algorithms. Regarding computational cost, 

our method is efficient and can be 

parallelized since geometrical and depth 

features are processed independently. 

Additionally, the hierarchical region 

merging process implemented here is 

based on an iterative process that can be 

treated in new computational 

configurations. 

Despite current studies that report 

remarkable advances in segmentation 

tasks [13]-[15], the effectiveness of their 

strategies depends of proper adjustments 

of learned representations, which, in 

general, require large training batches.  

In that sense, those approaches achieve 

effectively hierarchical architectures, 

discovering kernels even to represent basic 

primitives. The proposed approach could be 

integrated into first- and mid-level layers 

of such hierarchical schemes, allowing a 

more effective and faster training. Finally, 

the use of these pre-computed regions from 

the proposed tree representation can 

reduce overfitting problems and address 

the segmentation challenges of reduced 

training datasets. 
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