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Abstract 

Cocoa beans are the most important raw material for the chocolate industry and an 
essential product for the economy of tropical countries such as Colombia. Their price mainly 
depends on their quality, which is determined by various aspects, such as good agricultural 
practices, their harvest point, and level of fermentation. The entities that regulate the 
international marketing of cocoa beans have been encouraging the development of new 
classification methods that, compared to current techniques, could save time, reduce waste, 
and increase the number of evaluated beans. In particular, hyperspectral images are a novel 
tool for food quality control. However, studies that have examined some quality parameters 
of cocoa using spectroscopy also involve the chemical evaluation of cocoa powder and liquor 
and the interior of the beans, which implies an invasive analysis, longer times, and waste 
generation. Therefore, in this paper, we assess the quality of cocoa beans based on their level 
of fermentation using a noninvasive system to obtain hyperspectral information, as well as 
fast image processing and spectral classification techniques. We obtained hyperspectral 
images of 90 cocoa beans in the range between 350 and 950 nm in an optical laboratory. In 
addition, each cocoa bean was classified according to its fermentation level: slightly fermented 
(SF), correctly fermented (CF), and highly fermented (HF). We compared this classification 
with that carried out by experts from the Colombia National Federation of Cocoa Growers 
and reported in the Colombian technical standard No. 1252. The results show that the level 
of fermentation of dried cocoa beans can be estimated using noninvasive hyperspectral image 
acquisition and processing techniques. 

 
Keywords 

Cocoa beans, level of fermentation, hyperspectral images, spectral classification, 
superpixel. 
 

Resumen 

Los granos de cacao son la materia prima de la industria del chocolate y un producto 
esencial para la economía de países tropicales como Colombia. El precio del grano depende 
principalmente de su calidad, determinada por diversos aspectos, tales como, buenas 
prácticas agrícolas, el punto de cosecha del fruto y la fermentación. Entidades que regulan el 
comercio internacional de granos de cacao promueven la creación de nuevas metodologías de 
clasificación que, en comparación con los métodos actuales, disminuyan el tiempo y los 
residuos y aumenten la cobertura de granos evaluados. Las imágenes hiperespectrales se han 
venido posicionando como una herramienta novedosa para el control de calidad de 
alimentos. Sin embargo, trabajos que analizan ciertos parámetros de la calidad del cacao 
mediante espectroscopía, también involucran etapas de estudio químico del polvo, el licor y el 
interior de los granos, lo que implica un análisis invasivo, así como un tiempo extenso y 
producción de residuos. Por lo tanto, este artículo analiza la calidad de granos de cacao a 
partir del parámetro estado de fermentación, usando un sistema no-invasivo de captura de 
información hiperespectral y técnicas rápidas de procesamiento de imágenes y clasificación 
espectral. Imágenes hiperespectrales de 90 granos de cacao en un rango de 350 a 950 
nanómetros fueron adquiridos y se asignó una etiqueta a cada grano de cacao según su nivel 
de fermentación: poco, correcta y altamente fermentado. Esta clasificación se comparó con la 
realizada por profesionales de la federación nacional de cacaoteros a través de la norma 
técnica colombiana número 1252. Los resultados obtenidos muestran que es posible estimar 
el nivel de fermentación de granos secos de cacao usando técnicas no-invasivas de adquisición 
de y procesamiento de imágenes hiperespectrales. 
 
Palabras clave 

Granos de cacao, nivel de fermentación, imágenes hiperespectrales, clasificación espectral 
superpixel. 
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1. INTRODUCTION 

 

Cocoa beans are the dried and fully fermented seeds from the cacao tree (Theobroma 

cacao). Although this tree originated in America's rainforests, it is also grown in the tropical 

areas of Africa and Asia [1], [2]. Cocoa constitutes a valuable agricultural commodity for more 

than 40 million people around the world [3]. In addition, the chemical quality attributes of 

raw cocoa [4] make it highly demanded by the confectionery, aesthetics, and healthcare 

industries (see Table 1) [5], [6], [7]. 

 
Table 1. Chemical composition of Latin American unroasted cocoa bean samples. Source: [4]. 

Nutritional content of 1 kg of cocoa 

Proximates 

Water (g) 59.51 

Ash (g) 40.32 

Total protein (g) 127.91 

Carbohydrate by difference (g) 337.85 

Total dietary fiber (g) 194.74 

Total fat (g) 434.56 

Minerals 

Calcium, Ca (mg) 1225.55 

Magnesium, Mg (mg) 3075.24 

Potassium, K (mg) 12486.21 

Phosphorus, P (mg) 4231.43 

Iron, Fe (mg) 146.47 

Manganese, Mn (mg) 21.64 

Copper, Cu (mg) 26.10 

Zinc, Zn (mg) 44.65 

Sodium, Na (mg) 261.05 

Selenium, Se (mg) 2.80 

 

A total of 68 % of the world's cocoa beans come from Africa—the largest cocoa producer 

worldwide—, while only 17 % are produced by Latin American countries (Brazil, Ecuador, 

Mexico, Peru, Dominican Republic, and Colombia) [8]. In addition, the best and most 

expensive quality cocoa, known as premium cocoa (5 % of the world’s cocoa), comes from Latin 

America [9], [10]. Global cocoa production has increased significantly in recent years, hitting 

a record of 4.85 million tons in 2019 [11]. However, it has not been enough to meet the world’s 

demand [12]. For this reason, the International Cocoa Organization (ICCO) has suggested 

Latin American countries to increase their cocoa exports. To that end, less complicated and 

faster classification processes must be explored [13], [14]. 

Nowadays, in most cocoa international markets, the methods employed to classify beans 

consist of chemical, physical, and sensory analyses that take approximately 26 hours [15]. 

Additionally, this classification is often carried out with samples, that is, 100 grains per ton, 

to determine the quality of the load. Said analyses require tasters, technical personnel, 

specialized equipment, and the destruction of the samples [1], [6]. 
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Moreover, Hyperspectral Image (HSI) acquisition and processing techniques have been 

increasingly used in food quality control [16] [17], [18], [19], [20]. A hyperspectral image can 

be represented as a three-dimensional data cube, 𝐹 ∈ 𝑅𝑀 × 𝑁 × 𝐿 , where M and N correspond 

to the spatial dimensions; and L, to the spectral dimension. Each element reflects, absorbs, 

and emits electromagnetic energy in different magnitudes at each specific wavelength 

according to its physical and chemical composition [21], [22]. Therefore, two elements with a 

different composition can be identified or associated through their spectral signatures [23], 

[24], [25], [26]. 

Some studies have been conducted in India, Ghana, Peru, and Germany to evaluate the 

quality parameters of cocoa beans using spectral information [27], [28], [29], [30], [31], [32], 

[33], [34]. For instance, in [33], the composition and aroma profiles of 26 cocoa beans were 

assessed using Mass Spectrometry (MS)-fingerprinting and Headspace-Solid Phase Micro-

extraction-Gas Chromatography–Mass Spectrometry. As a result, the authors classified the 

beans into fine flavor cocoa, well-fermented cocoa, and low-quality cocoa. In [27], the 

fermentation index, pH, and polyphenol content of cocoa beans were calculated. The whole 

grains were used for the spectral measurements in the near-infrared range, while, for the 

chemical analysis, they were grounded into a fine powder. According to the results, an 

accuracy greater than 80 % in the fermentation index and total polyphenols was achieved. In 

general, these and other studies have followed chemical procedures that, although precise, 

involve invasive stages and require very specialized personnel; hence, they could not be 

generalized to all marketable beans. 

Recent works have demonstrated that grouping pixels with similar characteristics within 

an image (called superpixels [35]) before processing HSIs makes it possible to obtain more 

accurate classification results and reduces the computational cost and time required by 

supervised classification methods [36], [37], [38], [39]. 

Specifically, [38] presents a multiscale HSI strategy based on superpixels to classify 

remote sensing images and obtain results that are up to 3 % more accurate than those 

provided by classification methods that do not use superpixels. Furthermore, the approach 

followed in [39] groups the spatial information of a Red, Green, Blue (RGB) image into 

superpixels and fuses such features with the spectral information of a HSI. The results show 

that the proposed classification method optimizes the overall accuracy and reduces the 

computational complexity compared to traditional approaches in which all pixels are used. 

Similar results are reported in [36] and [37]. However, the superpixel technique with 

hyperspectral classification has not yet been used to evaluate, in a noninvasive manner, the 

classification of cocoa beans. 

Therefore, in this study, we propose a noninvasive approach to classify cocoa beans into 

three categories based on their fermentation level using their hyperspectral images. In 

particular, the proposed classification method includes the following stages: sample 

preparation, acquisition of cocoa beans’ spatio–spectral information in the visible and near 

infrared (350–950 nm) ranges, background subtraction, feature extraction with superpixels, 

and hyperspectral classification. 

The rest of this paper is structured as follows. Section 2 summarizes the stages of the 

proposed method. Section 3 provides an analysis of the data and presents the results. Section 

4 draws some conclusions and outlines some future lines of work. 
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2. MATERIALS AND METHODS 

 

This section details the proposed classification methodology and the data acquisition 

process. 

 
2.1 Cocoa Selection 

 

The cocoa beans were harvested in a farm located in the town of Rionegro, Santander, 

Colombia (7° 15' 51" N, 73° 08' 58" W). These beans were extracted from cocoa pods within 

the same hectare and then fermented by a local farmer. Experts from the National Cocoa 

Federation in Colombia selected 30 samples for each of the three fermentation levels: 

(i) slightly fermented (LF), (ii) correctly fermented (CF), and (iii) highly fermented (HF). In 

total, 90 cocoa beans were selected. 

Afterwards, the beans were evaluated in an optical laboratory and their spectral data were 

captured using the experimental setup described below. The environmental conditions in the 

laboratory included a temperature of 23 °C and a humidity of 60 %. 

 
 

2.2 Experimental Setup 

 

An optical assembly was built in our laboratory to capture hyperspectral images of the 

cocoa beans. The built testbed is shown in Figure 1. The scene (cocoa beans) was illuminated 

with a tunable light source (Oriel Instruments, TLS-300 XR) that decomposes the 

illumination from a halogen light source in its corresponding monochromatic wavelengths, 

with steps of two nanometers within the spectral range between 350 and 950 nm. Such 

monochromatic light is propagated through a bifurcated optical fiber (Illumination 

Technologies, 9145HT dual 6” light line) towards two lamps that illuminate the scene. 

 

 
Figure 1. Top view of the testbed we used to obtain the spectral images. Source: Authors’ own work. 

 

A monochromatic sensor (AVT Stingray F-080B) captures the intensity of the light 

reflected by the cocoa beans (𝐺𝑟𝑒𝑓(𝜆)). Each obtained hyperspectral image exhibits 1032 x 776 

pixels of spatial resolution (M x N) and 301 spectral bands (L). Also, a white scene (𝐺𝑖𝑛𝑐(𝜆)) was 



K. Sánchez et al.  TecnoLógicas, Vol. 24, nro. 50, e1654, 2021 

Página 6 | 17 

acquired to calibrate the hyperspectral information as 𝐹(𝜆) =
𝐺𝑟𝑒𝑓(𝜆)

𝐺𝑖𝑛𝑐(𝜆)
. Six beans were organized 

for each scene, considering the focus and field of vision of the setup. In total, five data cubes 

were obtained for each of the three fermentation categories, which resulted in 15 spectral 

images, 𝐹 ∈ 𝑅𝑀 × 𝑁 × 𝐿 , each with six beans of the same category (i.e., a total of 90 cocoa beans 

captured). 

Figure 2 presents six of the 301 spectral bands of one random bean, which were acquired 

following the proposed setup. In addition, it spectral band includes the spectral range (VIS by 

visible or NIR by Near-infrared) and wavelength of each band in nanometers. We freely 

published the spectral images of the 90 cocoa beans on IEEE DataPort [40]. Figure 3 plots 

the mean spectral responses of the three fermentation categories. After the spectral 

information of the cocoa beans was obtained, the spectral images were processed. 

 

 
Figure 2. Examples of some spectral bands captured by the optical assembly for each bean 

 Source: Authors’ own work. 

 

 
Figure 3. Mean spectral signatures of the 90 cocoa beans classified into three categories and their standard 

deviations: 30 slightly fermented beans (in green), 30 correctly fermented beans (in blue), and 30 highly 

fermented beans (in red). Source: Authors’ own work. 
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2.3 Background Subtraction 

 

The first stage in HSI processing consists in identifying and extracting the pixels 

containing the information of interest, that is, the beans. Since the background of the images 

is black, a binary mask (𝐷) that identifies the position of the beans was created using 

thresholding. 

Additionally, morphological operations were employed. The values of the pixels in the 

binary image, 𝐷, are adjusted based on the value of other pixels in its neighborhood, such that 

the binary result (𝐷  ∈ 𝑅𝑀×𝑁) is a given closed figure (B). The closing operator consists of a 

dilation operator and an erosion operator. The dilation operator, on the one hand, adds pixels 

to the boundaries of the objects in the image and is mathematically expressed as (1). 

 
(𝐃 ⊕ 𝐁)𝑖,𝑗 =  𝑚𝑎𝑥{𝐃(𝒊−𝒙),(𝒋−𝒚)| 𝒙, 𝒚 ∈ 𝐁} (1) 

 

The erosion operator, on the other hand, removes the pixels in the boundaries of the objects 

and is expressed as (2). 

 
(𝐃 ⊖ 𝐁)𝑖,𝑗 =  𝑚𝑖𝑛{𝐃(𝒊−𝒙),(𝒋−𝒚)| 𝒙, 𝒚 ∈ 𝐁} (2) 

 

In this study, following the shape of the beans, B is chosen as an oval shape of 200 x 

300 pixels. Then, the result of the closing operation is given by (3).  

 

𝐃̅  =  (𝐃 ⊕ 𝐁) ⊖ 𝐁  (3) 

 

Finally, the binarized image, 𝐷 , is multiplied with the hyperspectral image, 𝐹 ∈ 𝑅𝑀 × 𝑁 × 𝐿 , 

of each sample to obtain the reflectance values of the cocoa beans as follows (4): 

 

𝓕̃ = 𝐃̅ ∘  𝓕, (4) 

 

where ∘ is the Hadamard product; and 𝐹̃, the HSI without background information. 

Figure 4 shows a HSI, 𝐹; its binary mask, 𝐷, which was obtained with (3); and the respective 

dataset, 𝐹̃, without background, which was calculated using (4). 

 

 
Figure 4. (a) a HSI 𝐹, (b) its binary mask 𝐷, and (c) the HSI 𝐹̃ without background. Source: Authors’ own work. 

 
2.4 Feature Extraction 

 

The second stage in the proposed framework involves extracting the classification features 

from 𝐹̃. Recent works have demonstrated that segmenting spectral information into spatial 

superpixels reduces the computational cost required by supervised classification methods and 
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increases accuracy [36], [37], [38], [39]. Since traditional superpixel algorithms operate on 

three-band images (e.g., RGB images), we propose the following to extract the classification 

features: first, a three-band (RGB) image of the 𝐹̃ hyperspectral data cube is extracted. Notice 

that 𝐹̃ is acquired from the range between 350 and 950 nm. Then, from the 𝐹̃ data cube, the 

spectral bands corresponding to 460, 530, and 670 nm are selected to form a three-band image 

(𝑅, 𝐺, 𝐵). The three wavelengths represent the spectral response peaks of the blue, green, and 

red channels, as shown in Figure. 5. 

 

 
Figure 5. Theoretical spectral responses of the red, green, and blue channels. Source: Adapted from [41]. 

 

Afterwards, a segmentation algorithm is applied to the three-band image to find a 

superpixel map. For this purpose, we specifically use the well-known Simple Linear Iterative 

Clustering (SLIC) algorithm [35].  

The SLIC algorithm works in the five-dimensional space, where the two coordinates (x, y) 

correspond to the spatial location of the superpixel and the other three components depict the 

RGB channels. The input variable of this algorithm is the number of desired superpixels 

(𝑁𝑠𝑝𝑥). Given 𝑁𝑠𝑝𝑥, where the approximate size of each superpixel is 𝑀𝑁 𝑁𝑠𝑝𝑥⁄ , the SLIC 

algorithm defines a cluster center at every grid interval, S, as follows (5):  

 

𝑆 =  √𝑀𝑁 𝑁𝑠𝑝𝑥⁄  (5) 

Hence, the algorithm chooses 𝑁𝑠𝑝𝑥 superpixel cluster centers, 𝐶𝑗 =  [𝑟𝑗 , 𝑔𝑗 , 𝑏𝑗, 𝑥𝑗, 𝑦𝑗]
𝑇
 with 

 j = [1, 𝑁𝑠𝑝𝑥]. 

The SLIC algorithm assumes that the pixels associated with a cluster lie in a 2𝑆 ×  2𝑆 

area around the superpixel center on the (x, y) plane. Therefore, this is the pixel search area 

near each cluster center. The center is transferred to the lowest gradient position in a 3 × 3 

neighborhood to prevent it from remaining on the edge of an object. In the next step, for each 

cluster center, the algorithm assigns the best-matching pixels from the search area according 

to the distance measure 𝐻𝑡  defined as follows (6), (7), (8): 
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𝐻𝑐 = √(𝑟𝑗 − 𝑟𝑗′)
2

+ (𝑔𝑗 − 𝑔𝑗′)
2

+ (𝑏𝑗 − 𝑏𝑗′)
2
 

 
(6) 

𝐻𝑃 =  √(𝑥𝑗 − 𝑥𝑗′)
2

+ (𝑦𝑗 − 𝑦𝑗′)
2

  

 
(7) 

𝐻𝑡 = 𝐻𝑐 +
𝑚

𝑆
𝐻𝑃, (8) 

 

where 𝐻𝑐 is the sum of the RGB distance and the xy plane distance normalized by the grid 

interval S; and 𝑟𝑗, 𝑔𝑗, and 𝑏𝑗 denote the color of the 𝑗 − 𝑡ℎ superpixel cluster center, while 𝑗′ 

indexes each pixel, 𝑗′ = [1, 𝑀𝑁]. The value of m controls the compactness of a superpixel, 

which can be in the [1, 20] range. Usually, it is chosen as = 10 [39]. In this paper, we used 

𝑁𝑠𝑝𝑥 = 500. Figure 6 is an RGB image segmented into superpixels with the SLIC algorithm 

and displayed with a false-color composite. 

Finally, the spatial information of the superpixel map is matched with the hyperspectral 

information of the data cube  

 

 
Figure 6. A cocoa bean RGB image segmented into 500 superpixels with the SLIC algorithm 

Source: Authors’ own work. 

 

𝓕̃ to calculate the average spectral signature of each superpixel and build an array with 

these spectral signatures, i.e., a matrix of size 𝐿 × 𝑁𝑠𝑝𝑥, as explained below. 

Let 𝐅̃ ∈ ℝ𝐿 × 𝑀𝑁 be the unfolded matrix of the hyperspectral image (𝓕̃) reorganized as 

 𝐅̃ = [𝐟(1), … , 𝐟(𝑀𝑁)], where 𝐟̃(𝑘) ∈ ℝ𝐿  represents the spectral signature of the k-th pixel.  

Mathematically, the matrix with the average spectral signatures 𝐘 ∈ ℝL×𝑁𝑠𝑝𝑥 is created 

as (9): 

 

𝐘 = 𝐅̃ 𝐇, (9) 

 

where 𝐇 ∈ ℝ𝑀𝑁×𝑁𝑠𝑝𝑥  is an average sorting matrix, in which the different values of zero for 

each column (ℓ) have a weight 1 𝑁𝑠
ℓ⁄ , such that 𝑁𝑠

ℓ is the number of pixels grouped in a 

superpixel. Then, the matrix 𝐘 = [𝒚1, … , 𝐲𝑁𝑠𝑝𝑥
] of spectral signatures will be classified as 

explained in the next subsection. 
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2.5 Supervised Classification 

 

The last step in the proposed framework is to classify the spectral signatures of each 

superpixel in 𝑌 using the Support Vector Machine (SVM) algorithm. 

For this purpose, we denote the information of n spectral signatures used in the training 

step as 𝛩 = {𝑦1, … , 𝑦𝑛}, and their respective class labels as Ω = {𝜔1, 𝜔2, 𝜔3}, where 𝜔1, 𝜔2,𝜔3  ∈

 𝑅𝑛/3 represent the slight, correctly, and high fermentation levels, respectively. 

 
2.5.1 Algorithm 

 

The SVM algorithm was initially proposed for binary classification in order to determine 

a hyperplane (𝐲𝑻
𝑘𝐌+b) that optimally separates the samples of one class from those of 

another [42,43]. However, since this study considers three categories, multiple-class SVM 

should be employed [42]. However, since this study considers three categories, multiple-class 

SVM should be employed [43]. Specifically, said method seeks to determine d hyperplanes (in 

our case d = 3), solving the following optimization problem for the training stage (10): 

 

min
𝐌𝑚,𝜉𝑖

 
1

2
∑ 𝐌𝑚

T 𝐌𝑚
𝑑
𝑚 = 1 +  𝜆 ∑ 𝜉𝑖

𝑛
𝑖 = 1 , 

(10) 
𝑠. 𝑡. 𝐌𝛚𝑖

T 𝜑(𝐲𝑖)  −  𝐌t
T𝜑(𝐲𝑖)  ≥  1 −  𝛿𝛚𝑖,𝑡 −  𝜉𝑖 , 

 

where 𝐌𝑚  is the m-th weight vector; n, the number of training samples; 𝛚𝒊  ∈  {𝟏, . . . , 𝑑}, the 

labels of the i-th super-pixel; 𝜉𝑖, the set of slack variables that consider the nonseparability 

between sets belonging to different classes; 𝜆, a regularization parameter that controls the 

influence of the misclassified samples; 𝑖 = 1, . . . , 𝑛;  and 𝑡 ∈ 1, . . . , 𝑑. The mapping function 𝜑 

projects the training data into a suitable feature space to allow for nonlinear decision surfaces, 

and 𝛿𝑖,𝑗 is the Kronecker delta function with value 1 for i=j and 0 otherwise. Finally, with 

trained weight vectors 𝐌𝑚, the resulting decision function for any superpixel 𝐲𝑖 is given by 

(11): 

 

𝛚𝑖̅̅̅̅ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑚𝐌𝑚
T 𝜑(𝐲𝑖). (11) 

 

Note that the result obtained in (11) is the classification of one superpixel. Therefore, to 

assign a label to the whole bean, the predominant label is calculated as (12) 

 

𝛚𝒋̅̅̅̅  =  arg max
Ω={𝛚𝟏,𝛚𝟐,𝛚𝟑}

 ∑ 𝛿 (𝝎𝑗,𝑖̅̅ ̅̅̅
𝑁𝑠𝑝𝑥

𝑖 = 1
 , Ω). (12) 

 

 

3. DATA ANALYSIS AND RESULTS 

 

This section presents an analysis of the classification of cocoa beans in terms of their level 

of fermentation using the proposed method. The SVM classifier uses a Gaussian kernel and 

cross-validation for hyperparameter tuning, which was implemented using a Matlab toolbox. 

First, the classification focuses on finding a label for each bean based on the calculation of 

the predominant label. Second, bean uniformity is analyzed assuming each superpixel as a 

sample. Finally, the influence of the number of training samples on classification accuracy is 

calculated. 
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3.1 Bean Classification Based on Predominant Label 

 

In this subsection, we evaluate the classification proposed in (12). The objective is to label 

each bean with its predominant fermentation category. Table 2 lists some parameters of this 

classification. 

 
Table 2. Classification parameters. Source: Authors’ own work. 

Number of cocoa beans 90 

Superpixels per bean 500 

Beans per category 30 

Spectral superpixels per category 15000 

Spectral superpixels in total 45000 

Percentage of spectral signatures used for training the SVM classifier 15 % 

 

In total, we classified 90 cocoa beans, each one spatially divided into 500 regions 

(superpixels); that is, we classified a total of 45,000 superpixels. Let us remember that each 

superpixel has an associated spectral signature consisting of 301 reflectance values measured 

between 350 and 950 nm in steps of 2 nm. For this classification, we used 15 % of the samples 

to train the SVM classifier. Figure 7 shows the result of classifying one of the 90 cocoa beans 

using the proposed method. The framework assigns a label to the spectral signature of each 

superpixel and, subsequently, assigns the predominant label to each bean. 

As mentioned in Subsection 2.1, we also had the reference label of each bean, which was 

carefully assigned by a professional technical team. Therefore, after assigning a label to each 

bean, this method evaluated the precision of the classification proposed in this paper by 

comparing the results with the reference labels. 
 

 
Figure 7. Visual results of the classification by superpixels (top) and predominant label (bottom) 

 Source: Authors’ own work. 
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The confusion matrix in Table 3 details the number of beans correctly and incorrectly 

labeled with the proposed method. Each column in the matrix represents the number of 

predictions of each class, while each row represents the ground truth. 

From the results in the confusion matrix, we calculated the values of recall, precision, 

truth overall, and overall classification per class as in [44]. These results are shown in Table 4. 

 
Table 3. Confusion matrix of all the beans classified based on the predominant label (Equation 12) 

Source: Authors’ own work. 

 Slight Correct High 

Slight 30 0 0 

Correct 0 30 0 

High 0 0 30 

 

Note that all Slightly, Correctly, and Highly fermented cocoa beans were correctly labeled 

by the classifier (Table 3). In addition, the metrics in Table 4 show the high performance of 

the proposed classification approach. The overall precision of assigning the predominant label 

to 90 cocoa beans was 100 %. 

 
Table 4. Classification metrics from the confusion matrix. Source: Authors’ own work. 

Truth overall class Slight 30 Recall class Slight 100 % 

Truth overall class Correct 30 Recall class Correct 100 % 

Truth overall class High 30 Recall class High 100 % 

Classification overall class Slight 30 Precision class Slight 100 % 

Classification overall class Correct 30 Precision class Correct 100 % 

Classification overall class High 30 Precision class High 100 % 

Overall Accuracy 100 % 

 

3.2 Bean Uniformity Analysis 

 

Entities that regulate the international marketing of cocoa beans, such as The Federation 

of Cocoa Commerce London (FCC), require the quality of the seeds in each ton to be acceptably 

uniform. The objective is to guarantee the homogeneity of the products derived from cocoa. 

An approach such as the one proposed here can be used to analyze the uniformity of cocoa 

loads. It was shown that the 90 beans used in this study were correctly classified, 30 into each 

one of the fermentation categories. However, note that the initial labeling of the bean (bottom, 

Figure 7) disregards the fact that some superpixels can be classified into other fermentation 

levels different from the predominant one (top, Figure 7). Therefore, classifying each 

superpixel in a grain separately, we can analyze how uniform each bean is.  

In this subsection, we discuss a more detailed classification in which bean fermentation 

uniformity is calculated. This type of analysis has not yet been used commercially in the cocoa 

industry. Furthermore, it is rarely used in general food quality control, where uniformity is 

assessed at the collective level (batch uniformity). 

Table 5 shows the result of classifying the average spectral signature of each one of the 

45,000 superpixels. We used the general bean category as the reference label for each 

superpixel in the confusion matrix. Note that, compared to Table 3, the matrix in Table 5 is 

not diagonal. It is understood that the matrix is not diagonal because there may be regions 

(superpixels) with different degrees of fermentation despite being on the same grain. 
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Table 5. Confusion matrix of all the classified spectral superpixels (Eq. 11). Source: Authors’ own work. 

 Slight Correct High 

Slight 12,915 765 1,320 

Correct 435 12,360 2,205 

High 210 2,610 12,180 

 

Table 6 shows the percentage of superpixel classification in each class. The rows represent 

the actual labels (full-grain categories); therefore, the sum of the values in each row is equal 

to 100 %. In turn, the columns show the tags assigned by the classifier to the superpixels. The 

last row, Total, shows the percentage of superpixels labeled by the model in each fermentation 

level. Note that, although there are 30 beans in each category, regions of correct and high 

fermentation predominate, with 34.96 % and 34.89 % of the areas, respectively. 

Furthermore, Table 6 shows that, in highly fermented beans, there is a considerable 

amount of material that is well fermented (17.4 %), and vice versa (14.7 %). In comparison, 

only small portions of the beans with high and correct fermentation have slight fermentation 

(1.4 % and 2.9 %, respectively). Regarding slightly fermented beans, there are small burned 

regions (high, 8.8 %) and a minority of well-fermented areas (5.1 %).  

 
Table 6. Confusion matrix of all the classified superpixels in percentages. Source: Authors’ own work 

 Slight Correct High 

Slight 86.1 % 5.1 % 8.8 % 

Correct 2.9 % 82.4 % 14.7 % 

High 1.4 % 17.4 % 81.2 % 

Total 30.13 % 34.96 % 34.89 % 

 

This analysis could contribute to the implementation of fermentation techniques that 

produce a more homogeneous drying. 

 
3.3 Number of Training Samples and Classification Accuracy 

 

In this subsection, we vary the number of spectral signatures per category used in the 

SVM classifier training in order to analyze its influence on the precision of the classification 

and determine how many spectral signatures are necessary to obtain acceptable results. 

The training was programmed to randomly select a certain percentage of spectral samples, 

the same number of signatures from each category. The system was trained, and the beans 

were classified using the predominant label method. Specifically, the percentage of training 

samples was varied between 1 % and 20 % of the total signatures (45,000), as seen on the x-

axis in Figure 8. A 10 % of each resulting training set was used as validation to tune the 

model. 

Figure 8 shows the average accuracy of the test set over ten experiments. Evidently, as 

the number of training samples increases, the classifier improves its precision. 

Note that the class most easily recognized by the classifier is Slight fermentation, followed 

by Correct and High, with any proportion of training samples. 

Specifically, using only 2.5 % of the training samples (which is equivalent to 1,125 spectral 

signatures), the system correctly labeled 90 % of the cocoa beans as Slight fermentation, i.e., 

27 of the 30 beans in this class. Likewise, with the same training percentage, the classifier 
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accurately detected 76.6 % of the beans with Correct fermentation (23 beans), and 63.3 % of 

those with High fermentation (19 beans). 

Furthermore, in Figure 8, when the percentage of training samples exceeds 12.5 %, the 

overall accuracy of the classification is quite acceptable. In fact, let us remember that the 

results in Subsections 3.1. and 3.2. were obtained from classifications performed with 15 % of 

the training samples. 

 

 
Figure 8. Overall classification accuracy as a function of the percentage of training samples 

Source: Authors’ own work. 
 

4. CONCLUSIONS 

 

In this paper, we developed a non-invasive framework for classifying dry cocoa beans into 

three fermentation categories using spectral imaging and no chemical methods. The 

evaluation of the performance of the proposed framework showed its high accuracy in the 

classification of cocoa beans when 15 % or more of the samples in each category were used for 

training. Subsequently, the results were compared with the labels assigned to each bean by 

the Colombia National Federation of Cocoa Growers. The results of this study demonstrate 

that the use of spectral information is feasible for the noninvasive quality control of cocoa 

beans. 

Furthermore, using the proposed classification framework, it is possible to establish the 

percentage of each bean that belongs to a fermentation category different from the label of 

the whole bean. Future studies should examine other classification methods and frameworks 

in order to compare their computational complexity and accuracy with those of the SVM 

approach. 

The implementation of an analysis with this level of detail in the productive sector can 

help to investigate fermentation techniques that yield more uniform results. In the business 

sector, it can allow organizations to improve their pricing methods and have a more 

demanding selection of raw material for premium-quality products derived from cocoa. 
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