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Abstract 
Metabolomic studies generate large amounts of data, whose complexity increases if they 

are derived from in vivo experiments. As a result, analysis methods highly used in 

metabolomics, such as Partial Least Squares Discriminant Analysis (PLS-DA), can have 

particular difficulties with this type of data. However, there is evidence that indicates that 

Support Vector Machines (SVMs) can better deal with complex data. On the other hand, 

chronic exposure to organochlorines is a public health problem. It has been associated with 

diseases such as cancer. Therefore, its identification is relevant to reduce their impact on 

human health. This study explores the performance of SVMs in classifying metabolic profiles 

and identifying relevant metabolites in studies of exposure to organochlorines. For this 

purpose, two experiments were conducted: in the first one, organochlorine exposure was 

evaluated in HepG2 cells; and, in the second one, it was evaluated in serum samples of 

agricultural workers exposed to pesticides. The performance of SVMs was compared with that 

of PLS-DA. Four kernel functions were assessed in SVMs, and the accuracy of both methods 

was evaluated using a k-fold cross-validation test. In order to identify the most relevant 

metabolites, Recursive Feature Elimination (RFE) was used in SVMs and Variable 

Importance in Projection (VIP) in PLS-DA. The results show that SVMs exhibit a higher 

percentage of accuracy with fewer training samples and better performance in classifying the 

samples from the exposed agricultural workers. Finally, a workflow based on SVMs for the 

identification of biomarkers in samples with high biological complexity is proposed. 
 

Keywords 
Organochlorines, Recursive feature elimination, Multivariate statistical methods, 

Support vector machines, Metabolomics. 
 

Resumen 
Los estudios en metabolómica generan gran cantidad de datos cuya complejidad aumenta 

si surgen de experimentos in vivo. A pesar de esto, métodos ampliamente usados en 

metabolómica como el análisis discriminante por mínimos cuadrados parciales (PLS-DA) 

tienen dificultades con este tipo de datos, sin embargo, hay evidencia que las máquinas de 

vectores de soporte (SVM) pueden tener un mejor desempeño. Por otro lado, la exposición 

crónica a organoclorados es un problema de salud pública. Esta se asocia a enfermedades 

como el cáncer. Identificarla exposición es relevante para disminuir su impacto. Este estudio 

tuvo como objetivo explorar el rendimiento de las SVM en la clasificación de perfiles 

metabolómicos e identificación de metabolitos relevantes en estudios de exposición a 

organoclorados. Se realizaron dos experimentos: primero se evaluó la exposición a 

organoclorados en células HepG2. Luego, se evaluó la exposición a pesticidas en muestras de 

suero de trabajadores agrícolas. El rendimiento de las SVM se comparó con PLS-DA. Se 

evaluaron cuatro funciones kernel en SVM y la precisión de ambos métodos se evaluó 

mediante prueba de validación cruzada k-fold. Para identificar los metabolitos relevantes, se 

utilizó eliminación recursiva de características (RFE) en SVM y la proyección de importancia 

de variables (VIP) se usó en PLS-DA. Los resultados mostraron que las SVM tuvieron mayor 

precisión en la clasificación de los trabajadores agrícolas expuestos usando menos muestras 

de entrenamiento. Se propone un flujo de trabajo basado en SVM que permita la identificación 

de biomarcadores en muestras con alta complejidad biológica. 
 

Palabras clave 
Organoclorados, Eliminación Recursiva de Características, Estadística Multivariada, 

Máquinas de Vectores de Soporte, Metabolómica. 
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1. INTRODUCTION 
 

Modern analytical technologies such as mass spectrometry, nuclear magnetic resonance, 

and tandem mass spectrometry facilitate the study of the metabolome. Metabolomics is 

defined as the quantitative and comprehensive study of metabolites in a biological system [1]. 

Metabolomic studies produce large amounts of data on metabolites present in a specific 

biological scenario, which has been termed “metabolic profile” [2]. 

The complexity of metabolic profiles depends on the conditions in which the data are 

generated. For example, metabolic profiles from in vitro experiments show low variability, 

while those from in vivo studies (e.g., with humans) might be highly variable between 

individuals. This complexity affects the ability of statistical algorithms to make accurate 

predictions based on metabolic profiles. 

Methods such as Principal Component Analysis (PCA), Partial Least Squares 

Discriminant Analysis (PLS-DA), and Orthogonal PLS-DA (OPLS-DA) are commonly used to 

analyze metabolomics data. However, some studies have identified that their classification 

capacity can be suboptimal in studies with real life conditions where several variables cannot 

be controlled and the data can have a nonlinear distribution [3]. 

Support Vector Machines (SVMs) area supervised learning method that generates a model 

able to map a training dataset with two categories into a higher-dimensional space in order 

to separate them by a margin as large as possible [4]. Additionally, SVMs use kernel functions 

to deal with nonlinear distributions [4], [5], thus being able to work with a large number of 

variables and few samples. Some studies have shown that, in experiments with complex 

samples like blood, SVMs can identify relevant metabolites where PLS-DA has not achieved 

it [3], [6]. For example, a study published in 2008 [3] revealed that PLS-DA omitted 

creatinine, an important feature to differentiate females from males, which does not occur 

with SVMs. 

Recent studies have also compared PLS-DA with other methods, including SVMs. Mendez 

et al. [7] evaluated the classification performance of PLS-DA, logistic regression of principal 

components, SVMs, Random Forest (RF), and Artificial Neural Networks (ANNs) in 

metabolomics studies. The results of such study showed that SVMs and ANNs achieved an 

improvement in predictive performance over PLS-DA, which did not occur with RF. Gromski 

et al. [8] compared the capabilities of techniques such as discriminant function analysis of 

principal components, PLS-DA, RF, and SVMs and found that SVMs are suitable to handle 

outliers and they resist overfitting. 

Like in PLS-DA, a list of the most relevant metabolites can be generated by SVMs using 

SVM-Recursive Feature Elimination (SVM-RFE) [9]. This method employs a loop in which a 

SVM is trained with a linear kernel, and the feature with the lowest decision value in the 

model is eliminated. Hence, features are sorted according to their decision value [6], [9]–[11]. 

Among the techniques that have been implemented to identify relevant metabolites, SVM-

RFE has proven to be the most robust [6], [10], [11]. For these reasons, SVMs can be a useful 

method in the analysis of metabolomics data obtained from complex samples. 

On the other hand, organochlorines are a group of pesticides used to control plagues [12]. 

However, acute exposure to them can produce death; chronic exposure can cause serious 

diseases such as cancer; and there is not antidote [13]. Also, they can persist in the 

environment and penetrate the trophic chain. Chronic human exposure to organochlorines 

can be imperceptible until it is too late [14]. Hence, new diagnostic methods should be 

developed, and potential biomarkers in humans should be identified. Metabolomics studies 

can help in this regard. Therefore, data analysis methods with good performance are key to 

drawing reliable conclusions. 
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Thus, the aim of this study was to describe the discriminant ability of SVMs to handle 

samples from both in vitro and in vivo studies and compare their results with those obtained 

with PLS-DA. In addition, the capacity of SVMs to propose metabolites as candidate 

biomarkers in the context of organochlorine pesticide exposure was explored. 

 

 

2. METHODS 
 

2.1. Sample preparation -in vitro study 

 

A secondary dataset from a study published in 2016 [15] was used here. In such study, 

HepG2 cell cultures were exposed to four different organochlorines (i.e., aldrin, DDT, 

endosulfan, and lindane) at concentrations below the cytotoxicity index 50 in order to 

establish which concentration would be sufficient to induce the metabolic reaction without 

causing cell destruction and maintaining cell viability above 70 %. Additionally, a control was 

included: Dimethyl Sulfoxide (DMSO). Each exposure was repeated six times under the same 

cell passage to avoid genetic variation. The pesticide concentrations employed to assess cell 

viability were 5 µM, 10 µM, 25 µM, 50 µM, and 100 µM of endosulfan and lindane; 30 µM, 

60 µM, 150 µM, 300 µM, and 600 µM of aldrin; and 2.5 µM, 5 µM, 10 µM, 25 µM, and 50 µM 

of DDT. The concentrations that achieved the desired results were 100 µM of endosulfan and 

lindane, 50 µM of DDT, and 150 µM of aldrin. 

Subsequently, 36 samples of HepG2 cells were exposed to the organochlorine solutions 

(i.e., 100 µM of endosulfan, 100 µM of lindane, 50 µM of DDT, and 150 µM of aldrin), a mixture 

treatment at equimolar concentration, and the controls with DMSO (1 % v/v); six samples per 

treatment. In addition, the cells were incubated for 24 hours with 5 % CO2 at 37 °C. After 

such period of exposure, cellular metabolism was inactivated, and endogenous metabolites 

were extracted adopting the quenching methodology previously published in [15]. Then, the 

extracts were derivatized using methoxamine hydrochloride and N-methyl-N-(trimethylsilyl) 

trifluoroacetamide (MSTFA) and analyzed via Gas Chromatography combined with Time-Of-

Flight Mass Spectrometry (GC/TOF-MS) following the protocols established by the West 

Coast Metabolomics Center of the University of California, Davis [16].  

The information was processed as follows. First, the signals were automatically 

deconvolved using ChromaTOF software. Then, the data were extracted without smoothing, 

and peaks were detected at signal/noise ratios of 5:1 and a peak width of 3 s [15]. 

Subsequently, the retention peak width was filtered and calculated by means of the BinBase 

algorithm [17] and cross-checked with the Fiehn mass spectral library. 

Finally, 1081 signals were deconvolved. Those with more than 30 % missing values were 

discarded, leaving 399 signals related to potential metabolites, out of which 153 were 

identified and 246 remained unidentified. The dataset obtained was composed of 6 classes 

(aldrin, DDT, endosulfan, lindane, mixture, and DMSO) and 153 features. 

 
2.2. Sample preparation -in vivo study 

 

A secondary dataset from a study into agricultural workers exposed to different pesticides 

was used here. In that study, plasma samples were collected from 100 agricultural workers 

on coffee plantations. This process was led by the Laboratorio de Pesticidas of Universidad 

del Quindío (Colombia). Besides, a negative control group of thirty volunteers who had not 

been exposed to pesticides was included. 
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All the participants signed an informed consent (previously approved by the ethical 

committee) to take part in the study. The inclusion criteria included male subjects aged 18 or 

older and living in the Colombian Coffee Region. 

A blood sample was taken from each participant and processed to obtain blood plasma. 

Each plasma was analyzed to evaluate the presence and concentration of pesticides using Gas 

Chromatography with Flame Ionization Detector (GC-FID). Out of the 100 cases, 27 were 

found to be below the detection limit and considered negative cases, while 73 were found to 

be above the detection limit and considered positive cases. 

In the plasma of the 73 positive cases, the presence of six organochlorine pesticides (i.e., 

endosulfan, endrin, heptachlor, DDT, methoxychlor, and lindane) and chlorpyrifos (an 

organophosphorus pesticide) was identified. Furthermore, to assess the metabolic profile, the 

samples were processed and derivatized following the same protocol used for cell extracts [16]. 

Then, they were analyzed using a GC/MS single quadrupole, thus obtaining 478 signals. The 

dataset obtained was composed of 8 classes (endosulfan, endrin, heptachlor, DDT, 

methoxychlor, lindane, chlorpyrifos, and control) and 478 features. 

 
2.3. Statistical analysis 

 

PLS-DA and SVM-RFE were performed here to evaluate the metabolic profiles taken from 

the in vitro and in vivo studies. In the in vitro data, a subset with 153 metabolites was 

identified. Five groups were defined, one for each organochlorine: aldrin, DDT, endosulfan, 

lindane, and the mixture. Each group was compared with the control; hence, each test 

consisted of six experimental replicates. 

Regarding the in vivo data, the plasma samples were classified into seven groups 

according to the pesticide found in them: 5 samples in endosulfan, 31 in endrin, 28 in 

heptachlor, 3 in DDT, 4 in methoxychlor, 35 in lindane, and 18 in chlorpyrifos. Each group 

was then compared with the negative control. 

MetaboAnalyst 4.0 was used to perform PLS-DA [18]. For this purpose, the data were 

normalized with logarithmic transformation and scaled using the Pareto 

method. Subsequently, PLS-DA was applied to each group. Its accuracy to predict each 

metabolic profile was assessed with the k-fold cross-validation method for groups with at least 

ten samples, while, for those with less than ten samples, the Leave-One-Out Cross-Validation 

(LOOCV) technique was employed. Parameters R2 and Q2 were also measured. 

The list of the ten most relevant metabolites was obtained compiled using the Variable 

Importance in Projection (VIP) score [19], attaching greater relevance to those with higher 

VIP values. The SVM method was implemented in R language [20] using the RStudio 

platform [21] and the e1071 library [22]. Four kernels (linear, polynomial, sigmoid, and 

radial) were evaluated using four different margin penalties (1e100, 1e10, 1, and 1e-10). 

Incremental training was carried out with 20 %, 40 %, 60 %, and 80 % of the samples in 

order to identify the lowest number of samples needed to achieve 100 % accuracy (measured 

by k-fold cross-validation). SVM training was conducted with both normalized and raw data. 

The kernel with the best performance and minimum sample size required for training was 

employed to implement the SVM-RFE algorithm, but, in this case, using 100 % of the 

available samples. The lists with the ten most relevant metabolites were obtained for each 

metabolic profile. 
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2.4. Comparative analysis 

 

The two methods were compared based on the accuracy results of the k-fold cross-

validation and the position and inclusion of metabolites in the lists obtained by both. 

 

 

3. RESULTS 
 

Data normalization with log transformation, Pareto scaling, and PLS-DA were performed 

using MetaboAnalyst 4.0. PLS-DA was conducted with normalized data. 

Regarding PLS-DA, although accuracy was measured by k-fold cross-validation, it should 

be noted that MetaboAnalyst 4.0 requires a minimum of ten samples to apply such method. 

This criterion was not fulfilled by the DDT and methoxychlor samples in the in vivo study. In 

those cases, accuracy was validated using the LOOCV algorithm. Note that the results shown 

in Figure 1 represent the first principal component (the component with the best score). 

From Figure 1, we observe that, when PLS-DA was implemented using the data from the 

in vitro study, R2 was above 95 %; and Q2, above 85 %.  

However, when implemented using the data from the in vivo study, its accuracy decreased 

in those groups in which there were fewer samples. R2 fell to 63.4 % (endrin). In addition, Q2 

was also affected; it fell to 50.05 % (lindane) and did not exceed 81.9 % (endosulfan). 

SVMs were applied to both normalized and raw data. Nevertheless, the best results were 

achieved with normalized data; they are shown in Figures 2 and 3. In these, SVM training 

was performed with 80 % of the data, and 20 % was used to test the SVM model obtained. 

Four kernels were evaluated in terms of SVM training: Linear, Polynomial, Sigmoid, and 

Radial. Four cost margin penalties were implemented in each kernel: 1e100, 1e10, 1, and 1e-10. 

Kernel and cost used in each model are specified in the figure. Bar sizes represent the 

prediction accuracy obtained by each SVM model in a scale between 0 % and 100 %. 

Employing the normalized data from the in vitro study, all kernels exhibited good 

performance (except for the polynomial one) with 100 % accuracy using 80 % of the samples 

for training. Implementing the normalized data from the in vivo study, there was a slight 

decrease in accuracy, especially in those groups with a number of samples below ten (DDT 

and methoxychlor). However, the latter achieved 100 % accuracy in some scenarios of the 

sigmoid kernel. 

With respect to raw data, the best performance was achieved using 80 % of the samples 

for training, and the accuracy was between 90.63 % and 93.15 %. In addition to the linear 

kernel, the polynomial and radial kernels showed good performance. The polynomial kernel 

in particular yielded an accuracy of 93.1 % using a margin penalty of 1e-10. This case opens up 

the possibility of overfitting. 

In PLS-DA, the relevant features were identified by means of VIP scores, while, in SVM, 

the SVM-RFE technique was employed for such purpose. Both scenarios used normalized 

data. Tables 1 and 2 show the features proposed by both methods for the in vitro study.  
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Figure 1. PLS-DA classification performance. Accuracy, R2, and Q2 values in PLS-DA are presented for each 

type of experiment (in vivo and in vitro). All the values of the pesticides were obtained by k-mean cross 

validations, except for DDT in an in vivo experiment. Values are presented as percentages 

Source: Created by the authors. 
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Figure 2. Accuracy of the SVMs trained with the in vitro data using different types of kernel and margin 

penalties. Source: Created by the authors. 
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Figure. 3. Accuracy of the SVMs trained with the in vivo data using different types of kernel and margin 

penalties. Source: Created by the authors. 
 

The results of the in vivo study are not reported because no identification of the compounds 

was performed in that case. However, the percentage of coincidence between the two methods 

(i.e., PLS-DA and SVM-RFE) in the two studies was calculated here (Table 3).  

The comparative analysis reveals that, in the in vitro study, aldrin and the mixture were 

found to have the highest coincidences among the relevant metabolites identified in each 

method. Nevertheless, this panorama changes in the in vivo study, as heptachlor and lindane 

exhibited the highest number of coincidences. 
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Table 1. Top ten metabolites obtained by PLS-DA. Source: Created by the authors. 

Aldrin DDT Endosulfan Lindane Mixture 

Phosphoethanolamine Phosphoethanolamine N-acetyl aspartate Taurine Glucose-6-phosphate 

Phosphogluconic acid 
Cytidine-5 -

monophosphate 
Citric acid 

Phosphogluconic 

acid 
Phosphoethanolamine 

Cytosin Phosphogluconic acid Taurine Gluconic acid Citric acid 

Cysteine Glutathione Glucose-6-phosphate 
Alpha-

ketoglutarate 
Isocitric acid 

Gluconic acid 
2.5-dihydroxy 

pyrazine 
Phosphogluconic acid 

N-acetyl 

mannosamine 
Phosphogluconic acid 

Ribulose-5-phosphate 
5'-deoxy-5'-methyl 

thio adenosine 
Phosphoethanolamine Glutaric acid Ribose 

Hypoxanthine Cytosin Alpha-keto glutarate 
2.5-dihydroxy 

pyrazine 
Aspartic acid 

Alpha ketoglutarate Gluconic acid Isocitric acid 
Alpha-amino adipic 

acid 
Hypoxanthine 

Fructose 1 phosphate Hexitol Hexose-6-phosphate Adenine Hexose-6-phosphate 

Aspartic acid Sulfuric acid Cysteine 
Ribulose-5-

phosphate 
Alpha-ketoglutarate 

 
Table 2. Top ten metabolites obtained by SVM-RFE. Source: Created by the authors. 

Aldrin DDT Endosulfan Lindane Mixture 

Phosphogluconic acid Phosphoethanolamine Citric acid Alpha ketoglutarate Glucose 6 phosphate 

Alpha aminoadipic 

acid 
Cytosin 

Phosphogluconic 

acid 

Phosphogluconic 

acid 
Phosphogluconic acid 

Phosphoethanolamine 2,5 dihydroxypyrazine Isocitric acid Taurine Phosphoethanolamine 

Cysteine Alpha aminoadipic acid 
Alpha 

ketoglutarate 

N 

acetylmannosamine 
Citric acid 

Gluconic acid Phosphogluconic acid 
Hexose 6 

phosphate 

Glycerol alpha 

phosphate 
Ribose 

Cytosin Gluconic acid Aspartic acid Gluconic acid 
Cytidine 5 

monophosphate 

Hypoxanthine Aspartic acid N acetylaspartate Xilitol Isocitric acid 

Alpha ketoglutarate 
Cytidine 5 

monophosphate 
Hypoxanthine Creatinine Hypoxanthine 

3 phosphoglycerate Ribulose 5 phosphate 
3 

phosphoglycerate 

2 5 

dihydroxypyrazine 
Alpha ketoglutarate 

Malic acid Glutathione Aconitic acid Asparagine Cysteine 
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Table 3. Comparison of top ten metabolites. Results in percentage. Source: Created by the authors. 

Data from the in vitro study 

Pesticide Included in the top ten Same position in the top 

Aldrin 70.00 40.00 

DDT 60.00 10.00 

Endosulfan 60.00 0.00 

Lindane 60.00 10.00 

Mixture 80.00 20.00 

Data from the in vivo study 

Pesticide Included in the top ten Same position in the top 

Chlorpyrifos 50.00 20.00 

DDT 30.00 0.00 

Endosulfan 50.00 0.00 

Endrin 70.00 0.00 

Heptachlor 80.00 20.00 

Lindane 80.00 10.00 

Methoxychlor 60.00 10.00 

 

 

4. DISCUSSION 
 

In this study, PLS-DA was proven to be a good method to analyze data from in vitro 

studies, as it presented an R2 and a Q2 close to ideal values. However, when analyzing data 

from in vivo studies, its accuracy decreased in scenarios with few samples. Conversely, SVMs 

achieved 100 % accuracy in all the scenarios (in vitro and in vivo), but it was necessary to test 

the performance of the different kernels. Although the linear and sigmoid kernels exhibited 

good performance using margin penalties of 1e100, 1e10, and 1, the radial and polynomial 

kernels showed a poor one.  

According to this, the accuracy of PLS-DA and SVMs can be affected by conditions such as 

high variability and few samples, like those in in vivo studies. Nonetheless, it is possible to 

identify the kernels with the best performance for data analysis from in vivo studies and use 

them in SVMs, thus allowing a better classification. Moreover, another advantage of SVMs is 

that they can achieve an accuracy of 100 % with fewer training samples. For instance, in this 

study, they employed 80 % of the samples, while PLS-DA required all of them. 

Furthermore, comparing the lists of the ten relevant features of each profile in each 

method (SVM-RFE and PLS-DA), both methods shared similarities in the analysis of the in 

vitro study (equal to or greater than 70 %), but the results were heterogeneous for the in vivo 

study. The group with the lowest number of coincidences was DDT in the in vivo study, which 

poses the question of whether the number of samples could have influenced these results. 

This study identified an improvement in the predictive performance of SVMs over PLS-

DA in the analysis of data from in vivo experiments, something previously described by 

Mahadevan et al.[3] and Mendez et al. [7]. Although Gromski et al. [8] reported some 

shortcomings of SVM in dealing with missing values and assessing the importance of 

compounds, we consider that these problems could be overcome with SVM-RFE 

implementation. Gromski et al. also reported problems in visualizing, interpreting, reducing 
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dimensions, and selecting parameters. This could be solved with an appropriate kernel 

selection. 

In this study, the linear and sigmoid kernels showed the best performance. Although the 

radial kernel did not exhibit an adequate performance in this article, it has been one of the 

most widely employed [23], [24]. In some studies, it has even shown a superior performance 

compared to other popular predictors such as Naive Bayes, linear discriminant analysis, and 

quadratic linear discriminant analysis [25]. Probably, the present results may be explained 

by the fact that the data underwent a previous normalization process. The effect of data 

normalization on kernel performance has been analyzed by Wan et al. [26]. 

Although this study focused on the classic SVM kernels, new kernels have been proposed, 

such as the Hermite orthogonal polynomial kernel. This kernel makes it possible to use fewer 

support vectors for classification. In addition, it has been reported to achieve better error-rate 

performance [27]. Another new kernel is the weighted variable kernel, whose implementation 

in SVMs outperforms the classification of methods such as RF [28]. Other techniques with 

SVMs, such as SVM least squares, have been proposed for medical image analysis [29], [30]. 

These approaches could be evaluated to be implemented in metabolomics. 

SVM-RFE was employed here to select a list of relevant features. For this purpose, we 

suggest implementing SVMs with a kernel having an optimal margin penalty before using 

SVM-RFE. In particular, in this study, the linear and sigmoid kernels presented a margin 

penalty that was optimal for most scenarios. Nevertheless, for scenarios with few samples 

such as DDT, the sigmoid kernel was the only one that showed optimal performance. 

Although there were enough samples for data comparison in the in vitro study, some scenarios 

in the in vivo study, such as DDT and methoxychlor, had few samples. In this case, there was 

the risk of overfitting in both methods.  

Furthermore, it should be noted that, in the in vivo study, among the 73 cases with proven 

pesticide exposure, some agricultural workers had been exposed to more than one pesticide, 

which could have influenced the metabolic profiles and, hence, the performance of each 

technique. 

Although we identified 153 metabolites from the spectrometry signals obtained in the in 

vitro experiment, this was not done in the in vivo study, but it remains to be performed in 

order to define the biological impact in each scenario. 

In addition to SVM-RFE, another strategy that has been proposed to identify relevant 

features is multiclass SVM using L1-norm [10] and L2-norm, the latter exhibiting greater 

stability [31]. Thus, it may be interesting to explore these options in future studies. 

In summary, according to the findings of this work and those of the other studies 

mentioned here, SVMs are robust methods suitable for data derived from in vivo experiments 

and exhibit good classification performance even with few samples. Also, SVMs are 

advantageous in dealing with outliers, predictive power, and resistance to overfitting. 

However, their performance will depend on the hyperparameters and kernels used.  

Therefore, in order to make the most of the analysis with SVM-RFE and the “kernel trick”, 

it is recommended to initially evaluate each kernel, as well as the different margin penalty 

scenarios. Performance must also be evaluated based on the percentage of samples used for 

training in order to avoid overfitting. In this study, 80 % of the samples were needed for most 

scenarios. However, this may vary depending on the number of features and samples 

available. Next, the last step would be to implement SVM-RFE with the best kernel identified. 

Finally, it is necessary to clarify that the results obtained from one or the other method 

should be validated in future biological experiments to determine the biological impact of 

exposure to pesticides. 
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5. CONCLUSIONS 
 

In this study, SVMs and PLS-DA were proven to be appropriate methods to analyze data 

from in vitro studies with controlled conditions, but PLS-DA presented difficulties with data 

from in vivo studies (non-controlled conditions and non-linear data) in the context of 

organochlorine exposure. 

Regarding class prediction in data from in vivo studies, SVMs exhibited a greater 

predictive power than PLS-DA. Moreover, the kernel with the best performance identified by 

SVM analysis can be used in SVM-RFE to obtain an adequate list of most relevant features 

in the context of pesticides exposure. Additionally, the computational cost of SVMs is low. 

SVM-RFE is becoming a useful tool for biomarker identification, even when there are few 

samples. In addition, it is considered a robust method to analyze data derived from in vivo 

and in vitro studies. 
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