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Abstract 

Humanoid robots find application in human-robot interaction tasks. However, despite 

their capabilities, their sequential computing system limits the execution of computationally 

expensive algorithms such as convolutional neural networks, which have demonstrated good 

performance in recognition tasks. As an alternative to sequential computing units, Field-

Programmable Gate Arrays and Graphics Processing Units have a high degree of parallelism 

and low power consumption. This study aims to improve the visual perception of a humanoid 

robot called NAO using these embedded systems running a convolutional neural network. 

The methodology adopted here is based on image acquisition and transmission using 

simulation software: Webots and Choreographe. In each embedded system, an object 

recognition stage is performed using commercial convolutional neural network acceleration 

frameworks. Xilinx® Ultra96™, Intel® Cyclone® V-SoC and NVIDIA® Jetson™ TX2 cards 

were used, and Tinier-YOLO, AlexNet, Inception-V1 and Inception V3 transfer-learning 

networks were executed. Real-time metrics were obtained when Inception V1, Inception V3 

transfer-learning and AlexNet were run on the Ultra96 and Jetson TX2 cards, with frame 

rates between 28 and 30 frames per second. The results demonstrated that the use of these 

embedded systems and convolutional neural networks can provide humanoid robots such as 

NAO with greater visual recognition in tasks that require high accuracy and autonomy. 

 
Keywords 

Convolutional neural networks, field programmable gate array, system-on-a-chip, high-

level synthesis, humanoid robot. 
 
Resumen 

Los robots humanoides encuentran aplicación en tareas de interacción humano-robot. A 

pesar de sus capacidades, su sistema de computación secuencial limita la ejecución de 

algoritmos computacionalmente costosos, como las redes neuronales convolucionales, que 

han demostrado buen rendimiento en tareas de reconocimiento. Como alternativa a unidades 

de cómputo secuencial se encuentran los Field Programmable Gate Arrays y las Graphics 

Processing Unit, que tienen un alto grado de paralelismo y bajo consumo de energía. Este 

trabajo tuvo como objetivo mejorar la percepción visual del robot humanoide NAO utilizando 

estos sistemas embebidos que ejecutan una red neuronal convolucional. El trabajo se basó en 

la adquisición y transmisión de la imagen usando herramientas de simulación como Webots 

y Choreographe. Posteriormente, en cada sistema embebido, se realizó una etapa de 

reconocimiento del objeto utilizando frameworks de aceleración comerciales de redes 

neuronales convolucionales. Luego se utilizaron las tarjetas Xilinx Ultra96, Intel Cyclone V-

SoC y Nvidia Jetson TX2; después fueron ejecutadas las redes Tinier-Yolo, Alexnet, Inception 

V1 y Inception V3 transfer-learning. Se obtuvieron métricas en tiempo real cuando Inception 

V1, Inception V3 transfer-learning y AlexNet fueron ejecutadas sobre la Ultra96 y Jetson 

TX2, teniendo como intervalo entre 28 y 30 cuadros por segundo. Los resultados demostraron 

que el uso de estos sistemas embebidos y redes neuronales convolucionales puede otorgarles 

a robots humanoides, como NAO, mayor reconocimiento visual en tareas que requieren alta 

precisión y autonomía. 

 
Palabras clave 

Redes neuronales convolucionales, matriz de puertas lógicas programable en campo, 

sistema en chip, síntesis de alto nivel, robot humanoide. 
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1. INTRODUCTION 

 

Humanoid robots are used in assistance-type applications related to domestic, 

educational, and therapeutic services, among others [1]. This use arises from the sensations 

of comfort generated in humans in the interaction with this type of robot [2]. To produce these 

interactions, they have sensory devices that provide them with the ability to perceive and 

understand the environment. In particular, the visual perception system of humanoid robots 

is composed of cameras integrated into their structure, which gives them a field of vision [3]. 

Thanks to said field of vision, they can be used in applications oriented to object 

recognition in real time. For instance, the use of the NAO humanoid robot acquisition system 

and machine vision techniques for recognition and operation of a tool by programming by 

demonstration is presented in [4]. In that paper, the object to be recognized is captured by 

the visual perception system. The image is processed by a CPU, in which the execution is 

performed sequentially. The sequential processing of the image pixels produces a delay in 

the execution time in the computer system of the humanoid robot, limiting its responsiveness 

in decision-making for tasks involving object recognition [5]. This limitation is also shown in 

the implementation of classical computer vision techniques by [6], [7]. 

Deep learning algorithms have been executed on the sequential computing system of some 

types of humanoid robots. These algorithms are computational models that replicate human 

cognitive ability and contribute to the use of robots in everyday environments. Among these 

algorithms are Convolutional Neural Networks (CNNs), which have proven to be relevant in 

projects where object recognition, localization, and detection are integrated, becoming 

efficient in terms of accuracy in the completion of these tasks [8]. Different architectures of 

CNNs have been developed, such as AlexNet, VGGNet, ResNet, among others [9] - [11]. These 

networks were trained with millions of images, which improved the accuracy of the network 

in recognizing objects in everyday environments [12]. 

Despite their advantages, CNNs present a high computational cost when implemented in 

the sequential computing system of humanoid robots. Therefore, developments have been 

implemented in external computational systems based on higher-capacity CPUs connected 

to the robot’s computational architecture, usually through Ethernet [13]. Two studies [14], 

[15] concluded that the limitations in robot image processing were overcome by integrating 

an external computational system. However, the robot’s autonomy was affected by the 

continuous connection, generating dependence in tasks that require free movement in its 

environment. The limitations, in terms of responsiveness and autonomy, of humanoid robots 

with sequential operation computational architectures present a challenging problem for the 

implementation of CNNs on GPU- or FPGA-based embedded systems. Nevertheless, these 

devices have a high degree of parallelism and low power consumption in image and video 

processing applications, which could provide the humanoid robot with greater processing 

capacity and autonomy in tasks involving higher perception and deeper understanding of the 

environment. 

An implementation of a CNN on external computational systems is presented in [16]. The 

proposed system is based on the execution of a CNN SSD mobilenet DNN on the CPU-

centered Intel® NUC7i7BNH (NUC) and Jetson TX2 computational systems for an 

application focused on pedestrian detection on the NUgus humanoid robot. The DNN 

implementation on the NUC was performed on the CPU due to the incompatibility between 

Tensorflow and OpenCL, which prevented the implementation on the GPU side. Regarding 

the development on the Jetson TX2, the DNN implementation is performed on the GPU 

through CUDA. The results showed that the CPU of the NUC is faster than the GPU of the 

Jetson TX2 when executing the DNN: the NUC took 0.17 s; and the Jetson TX2, 0.57 s. 
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In terms of power consumption, the NUC CPU consumes 40.52 W, and the Jetson TX2, 

around 9.8 W. The results showed high-power consumption and inference times shorter than 

what is established for a real-time application. 

Different studies have addressed the implementation of CNNs on FPGAs. In [17], the 

authors explore weight and node-level parallelization over convolutional layer computations. 

The system uses maximum resources through data reuse and concatenation. 

Decomposition of input data into convolutional computations is also an approach 

implemented in that study; each iteration reuses the arithmetic computation units to process, 

in different fragments, the split data. The data is transmitted between the FPGA and the 

memory through the Direct Memory Access (DMA) unit and Axi-Stream transmission 

interfaces. This transmission in [18] includes partitioning techniques and embedding the 

weights in local memory and parallelization techniques. These parallelizations and the 

batch-based method reduced the memory bandwidth required in CNN [19] matrix 

multiplications. The opposite case occurs in the implementation of the Winograd algorithm 

proposed by [20], where less computational resources are used, but more pressure is put on 

memory bandwidth. 

On the other hand, the use of development environments has allowed researchers to 

control memory usage and parallelization techniques on these reconfigurable devices. In [21], 

[22] information from a trained CNN network is synthesized in hardware through the Vivado 

HLS high-level synthesis tool. The tool defines how the Intellectual Property Core (IP Core) 

that will contain the information of the images to be classified should be generated. The IP 

Core is generated using internally developed high-level wrappers to facilitate communication 

with direct access to the DMA memory. In [19] is presented a similar study, but they proposed 

an analytical design model called Roofline in their development. The model can be used to 

quantitatively analyze the computational performance and memory bandwidth required for 

any solution of a CNN design. 

Regarding the implementation of CNNs on GPUs, different acceleration techniques have 

been proposed for video and image processing. In [23], an acceleration method based on the 

treatment of binary weights is proposed, focusing on optimizing the arithmetic kernel in the 

storage of the weights. A similar approach is presented in [24], where the acceleration is 

performed through a resistive random-access memory (i.e., ReRAM). This accelerator 

architecture was adapted for bit-by-bit convolution. 

Previous studies showed a high-power consumption. In [25], a programmable many-core 

accelerator reduces said consumption for a CNN network architecture. The accelerator is 

called PACENet and consists of a neural network kernel-specific instruction set architecture 

and six pipeline stages to accelerate the convolution layer, Relu activations, Maxpool layer, 

and fully connected layer. The accelerator design is similar. However, two scheduling 

algorithms were implemented in two stages. The first stage is focused on image combination 

to accelerate the feed-forward process of the CNN; and the second, on a memory-light cost 

algorithm for accelerating an arbitrarily large CNN model for a memory-limited GPU device. 

In order to enhance the performance of the GPU system, accelerators have been developed 

through the parallel computing architecture CUDA (Computed Unified Device Architecture) 

in the execution of CNNs. In [26], CUDA is used to create a mechanism to improve the 

network execution, which consists of integrating the data of the network nodes and the 

dynamic adjustment of the smoothing factor of the basis function. Other authors [27] 

implemented a C++ library on CUDA to accelerate the training and classification process of 

CNN and NVIDIA cuBLAS libraries to exchange the mathematical vector and functional 

operations. 
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The developments of CNN accelerators on FPGA- and GPU-based embedded systems 

described in the previous paragraphs demonstrated high processing capacity and low power 

consumption. However, the use of these systems presents an open research topic regarding 

performance evaluation when they are applied to humanoid robots with sequential 

processors integrated into their structure. These processors present limitations in their 

processing capacity when they execute sophisticated algorithms of deep learning techniques, 

restricting the robot in performing tasks related to object recognition in real time. 

This paper proposes a visual perception enhancement system for humanoid robots using 

FPGA- or GPU-based embedded systems running convolutional neural networks. This study 

focuses on solving three problems: (1) reducing execution time and improving object detection 

accuracy in an everyday environment while maintaining robot autonomy; (2) creating a 

system that can be replicable to humanoid robots such as Pepper and Robotis OP3; and (3) 

producing a development that can be used to integrate heterogeneous architectures with a 

high degree of parallelism, low power consumption and small size that execute a CNN and 

can be easily integrated into the structure of any humanoid robot. The rest of this paper is 

organized as follows. Section 2 details the method and describes the acquisition of the image, 

communication with embedded systems, and the use of CNN acceleration frameworks for 

each heterogeneous architecture. Section 3 presents the results and discussion. Finally, 

Section 4 draws the conclusions. 

 

 

2. METHOD 

 

The goal of the proposed methodology is to design a visual perception enhancement 

system for humanoid robots based on an external computational system that executes a CNN. 

For this system, FPGA- and GPU-based embedded computational systems were 

evaluated. These heterogeneous architectures are small and have a high degree of 

parallelism and low power consumption. In this study, Intel Cyclone V SoC and Xilinx 

Ultra96-V2 cards were used for FPGA evaluation, and a Nvidia Jetson TX2 development 

board was used for GPU evaluation. In addition, an application focused on the classification 

of toys for early childhood education is developed through a transfer-learning on the 

Inception-V3 network from the INSTRE dataset. The inference is performed on the Ultra96 

FPGA embedded system. Table 1 shows the embedded systems’ features, along with the 

acceleration framework and the CNN executed here. 

 
Table 1. Embedded systems, acceleration frameworks and implemented CNNs 

Source: Created by the authors. 

Hardware 

type 
Development board 

Acceleration  

framework 
CNN 

FPGA 

Cyclone V-SoC PipeCNN AlexNet 

Ultra96 

Finn Tinier-YOLO 

Vitis-DPU Inception-V1 

Dnndk 
Inception-V3 transfer 

learning 

GPU Jetson TX2 

Darknet Tinier-YOLO 

TensorRT 
Inception-V1 

AlexNet 
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The study case in this article is a visual perception system for the NAO humanoid robot. 

However, since there is an Ethernet connection between the robot and the embedded system, 

the proposed system can be replicable in humanoid robots such as Pepper and Robotis OP3. 

This study was conducted using a virtual NAO humanoid robot, and the virtual 

environment was created by means of Cyberbotics Ltd. Webots [28], a mobile robotic 

simulation software that provides a rapid prototyping environment for modeling, 

programming, and simulating mobile robots. 

For the acquisition and transmission of the virtual image provided by Webots, Naoqi SDK 

and Choregraphe [29] programming software was used. For the transmission of the video 

from the robot, the encoding and sending of packets was performed using a TCP/IP socket. 

The video reception stage and the execution of the CNN are performed on each commercial 

embedded system selected here. Finally, for comparative purposes, an implementation 

focused on the execution of classical machine learning models on the computational system 

of the humanoid robot NAO is performed using a processor that has the same characteristics 

as NAO’s CPU. This hardware consisted of a Dell Inspiron Mini laptop containing a 1.6-GHz 

Intel Atom Z530 processor. The use of a processor with the same characteristics as NAO’s 

CPU facilitates testing without the presence of or powering up the humanoid robot. This 

paper combines the capabilities of CNNs, and heterogeneous architectures based on FPGA 

and GPU to improve the visual perception of humanoid robots such as NAO. Starting from 

the acquisition of the image of the object by the robot, it is necessary to have clear tools with 

which to simulate a virtual environment. For this application, Webots, Choreographe and 

python were used as programming languages for the generation of the virtual environment 

and transmission of the image. Once the image is acquired, it is sent to each embedded 

system, and, using acceleration frameworks for FPGA and GPU, the processing and 

classification or detection of the image is performed. At this point, understanding CNNs and 

knowledge of heterogeneous architectures become necessary to reproduce the proposed 

methodology. Figure 1 shows the diagram of the proposed system methodology. 

 

 
Figure 1. Diagram of the proposed system methodology. Source: Created by the authors. 

 

The following subsections detail the image acquisition-communication system and the 

implementation of the CNNs on each development board using CNN acceleration 

frameworks. Finally, we present the design of a backpack for NAO, which contains a 

heterogeneous architecture and a battery to power it. This approach allows an external 
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computational system to provide NAO with increased accuracy while maintaining its 

autonomy and mobility. 

 
2.1 Image acquisition and transmission 

 

The video acquisition system for the NAO humanoid robot was simulated using Webots, 

and it was possible to create a virtual environment and subsequently perform a movement 

control using Choregraphe. Once the scene is captured by Choregraphe, video transmission 

to the FPGA or GPU embedded system is started.  

 
2.1.1 Image acquisition 

 

The image acquisition system was based on the use of a virtual environment containing 

objects to be recognized by the NAO humanoid robot that was also located in the recreated 

scene. This virtual environment was created using the Webots simulator, where the image of 

the recreated scene is sent to Choregraphe in order to edit interactive movements for the 

robot and start the transmission of the image to each embedded system. The communication 

between Webots and Choregraphe is established using naoqisim software, which allows the 

motion control of the NAO robot generated by Choregraphe to be displayed in the Webots 

simulator. For the visualization in Choregraphe of the image generated by Webots, NAOqi 

API is used, which contains libraries for the acquisition and communication of images by 

assigning an IP address and an Ethernet port. For this image display, the process performed 

initially imports the libraries opencv and vision definitions from naoqi for image acquisition. 

From the function ALProxy the video transmitted by Webots is obtained from 

Choregraphe and is sent to the video monitor using the subscribeCamera function. Finally, 

the obtained image is displayed on the Choregraphe video monitor using the 

getImageRemote method. The pseudocode of the video acquisition is shown in Algorithm 1. 

 

Algorithm 1: Get Webots image in Choregraphe 
 

1 ip_robot = "string length" 

2 port_robot = "int length 

3 videoDevice = "ALProxy('image_webots', ip_robot, port_robot)" 

4 captureDevice = "videoDevice.suscribeCamera()" 

5 width = "image width" 

6 height = "image height" 

7 While True do 

8 result = videoDevice.getImageRemote(captureDevice) 

9 for i -> height 

10 for j -> width 

11 add image result in width x height 

12 end 

13 end 

14 Result: show image in Choregraphe: result 

15 end 
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2.1.2 Image transmission to the embedded system 

 

In this stage, TCP was used as the packet transmission protocol. Using Python libraries, 

it was possible to encode the image and then send it through an IP address and an Ethernet 

port. The Base 64 library allowed the encoding and decoding of the image according to RFC 

3548 standard. Using Base 64, the algorithms of Base 16, Base 32 and Base 64 were used to 

encode and decode arbitrary strings into text strings that could be sent over the network. 

Finally, the image displayed in Choregraphe is transmitted to each embedded system. 

Algorithm 1 was adapted for the coding-decoding of the image and the transmission. The 

pseudocode is shown in Algorithm 2. 

 

Algorithm 2: Video transmission to each embedded system 

 

1 ip_robot = "string length" 

2 port_robot = "int length 

3 videoDevice = "ALProxy('image_webots', ip_robot, port_robot)" 

4 captureDevice = "videoDevice.suscribeCamera()" 

5 width = "image width" 

6 height = "image height" 

7 While True do 

8 result = videoDevice.getImageRemote(captureDevice) 

9 for i -> height 

10 for j -> width 

11 add image result in width x height 

12 end 

13 end 

14 result = encoded(result) 

15 send by socket(result) 

16 Result: video transmission result 

17 end 

 
2.1.3 Image reception on the embedded system 

 

For the reception of the virtual image provided by Webots on the FPGA and GPU, the 

libraries described in the previous section were used. Through the setsockopt string function, 

the received data are manipulated and converted to a series of characters string. 

Subsequently, this series of characters is decoded and converted to the positional 

numbering system Base 64. Finally, the decoded image is read from the buffer stored in the 

memory using the OpenCV function cv2.imdecode. This pseudocode is shown in Algorithm 3. 

 
2.2 Implementation of CNNs on acceleration frameworks 

 

The CNN implementation on FPGA- and GPU-based embedded systems was performed 

using available acceleration frameworks. For the execution of the CNNs on FPGAs, the 

PipeCNN, FINN, and DPU frameworks were used. For the GPU, the Darknet and TensorRT 

frameworks were implemented. For our application, pre-trained models were used to 

evaluate the performance of these heterogeneous architectures and include them in the 

visual perception enhancement system for humanoid robots. 

 



J. Guajo et al.  TecnoLógicas, Vol. 25, nro. 53, e2170, 2022 

Page 9 | 22 

Algorithm 3: Video reception on each embedded system 

 

1 ip_robot = "string length" 

2 port_robot = "int length 

3 socket.bind(listen for ip_robot and port_robot) 

4 setsockpt(transmitted image) 

5 while True do 

6 result = base 64 decoding 

7 result = buffer reading by opencv 

8 Result: viewing the video result 

9 end 
 

2.3 Implementation of CNNS on FPGA boards 

 

The implementation was performed for two different acceleration frameworks. The 

PipeCNN framework was adapted for the Cyclone V-SoC development system on the INTEL 

platform to develop this work. The Cyclone V-SoC device has an ARM processor that acts as 

a host and an FPGA that works as an accelerator by executing a kernel implemented with 

OpenCL. PipeCNN uses two parameters to control the hardware resource cost and improve 

execution time. These parameters are the size of the data vectorization and the number of 

parallel computing units. This framework also uses high-level methodologies but based on 

OpenCL code; thus, highly efficient, and configurable kernels can be adapted to a wide 

variety of CNN models. PipeCNN is an FPGA CNN accelerator developed in OpenCL. It is 

compatible with Caffenet (AlexNet), VGG-16 and ResNeT-50. The framework is 

reconfigurable, which makes it easily adaptable to different boards, and, being written in 

OpenCL, it allows an easy implementation between different platforms such as CPU and 

GPU. 

The convolutional architecture defined in the PipeCNN framework is cascading, in which 

each layer is executed once the previous one is finished. Another optimization used by 

PipeCNN is Fixed-Point arithmetic representation instead of Floating-Point, reducing the 

resource consumption considerably in the FPGAs, although the accuracy of the CNNs is also 

reduced. This architecture is shown in Figure 2. 

 

 
Figure 2. Hardware architecture of the PipeCNN framework. Source: Created by the authors. 
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For the implementation of PipeCNN, Intel® FPGA SDK for OpenCL software was 

downloaded. Subsequently, the software was configured, and the OpenCL libraries were 

compiled. This compilation generated two files: *.aocx, which is the FPGA binary, and an 

executable that loaded the image and sent it to the FPGA. These two files were loaded on the 

board and subsequently configured when the embedded system was booted. 

In addition, the free software application Quantized Neural Network was adapted on a 

XILINX platform using a heterogeneous FPGA-based architecture. This application is based 

on the FINN framework presented by [30]. This framework allows the implementation of 

CNNs on Xilinx devices with a predefined architecture and high efficiency to focus more on 

the implementation. The implementation is done on an Ultra96 SoC board using the PYNQ 

framework. The PYNQ framework is used for rapid code development on the host. This 

framework allows high-speed applications to run side-by-side on hardware with Python-

based software applications. 

In the FINN framework, there are two types of CNN acceleration architectures 

implemented on FPGA; they are shown in Figure 3. The main difference between them is the 

fact that the DF architecture is built for a single CNN topology, weights and activations 

already defined. However, this is inefficient in FPGAs because in these architectures 

reconfigurable computing can be leveraged. This advantage is exploited in the MO 

architecture because, unlike its DF counterpart, it does not depend on network topology, and 

the block feeds back on itself and reconfigures itself based on the network topology. The DF 

architecture has an advantage over its MO counterpart because it is a dedicated and 

enhanced architecture only for a particular topology. Since the weights are in the same 

system, the processing time is much shorter, unlike MOs configured at each layer of the CNN. 

In the MO architecture, we can implement CNN topologies that cannot be executed in the 

DF architecture because they consume more resources than the board has available. The MO 

architecture loads each of these layers sequentially on the FPGA and thus does not occupy 

the entire resource space, especially the BRAM. 

Figure 4 shows the Tinier-YOLO network architecture, which is implemented in the 

Ultra96 SoC. The input and output layers are executed in software (ARM) through Python, 

while the internal layers are executed in hardware (FPGA). The layers consist of operations 

such as convolutions and max pooling. The framework supports only quantized layers, 

meaning that weights and activations are represented from 1 to 3 bits. Tinier-YOLO is a 

modified version of the Tiny-YOLO object detection system. Tinier-YOLO is also trained with 

the PASCAL VOC database, but with 1 bit for weights and 3 bits for activations. Tinier-

YOLO achieves 50.1 % mAP, while Tiny-YOLO achieves 57.1 % mAP. 

 

 
Figure 3. Types of FINN framework architectures: (a) DF architecture with defined layers and weights. (b) MO 

architecture with layers and weights for different accuracies and sizes. Source: Created by the authors. 
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Figure 4. Tinier-YOLO network topology implemented with the QNN framework 

Source: Created by the authors. 

 

The Xilinx DPU was used for the execution of the CNN Inception-V1 on the Ultra96-V2 

FPGA. This DPU is a programmable engine dedicated to executing each of the convolutional 

layers present in a CNN through a register configuration module, data controller module, 

and convolution computation module. This DPU module is integrated as a programmable 

logic (PL) unit, which is connected to the processing system (PS). Like the FINN framework, 

along with the DPU, PYNQ is used for host-side application development through an AX14-

based interface. Vitis IA is used to convert the model trained in Tensorflow to *.elf format. 

This format contains the weight information, which is read by the ARM of the FPGA SoC; 

after that, the tasks are sent to the DPU for processing and transmitting the results back. 

There are *.elf files for trained models such as Mnist, Resnet50 and YOLO v3. However, 

to make a comparison with the Jetson TX2, we selected the Inception-V1 CNN. 

The following paragraphs present a system for the improvement of the visual perception 

of the NAO robot so that it can be used in pedagogical activities for early childhood education. 

In this system, the first step is the recognition of toys by the robot in order to have a 

friendly interaction with children in learning activities. For this purpose, the Inception-V3 

network was selected, which can distinguish up to 1000 classes, allowing the robot to better 

understand its interaction environment. This network does not detect objects in the image 

like Tinier-YOLO; however, in this application, we consider the number of classes a key 

factor, and, although some networks could have a better performance in this aspect, they 

need more hardware resources than those existing in the Ultra96. For toy classification, a 

dataset of 10 classes was constructed from the INSTRE database [31]. For each of the selected 

classes, a training set consisting of 70 to 100 images and a validation set between 30 and 40 

were defined. The complete dataset consists of 810 training images and 356 validation 

images. 

The training for toy classification was performed using transfer-learning, which is a 

method that consists of reusing the previous training of a network by freezing some layers 

and selecting a lower learning rate to adapt the weights to the new training set. Transfer-

learning can decrease the training time and use small databases because most of the features, 

such as edges, curves, and colors, are already defined by the weights trained by the first 

layers. In this paper, transfer-learning is used with the Inception-V3 convolutional network, 

which was originally trained with the Imagenet dataset to recognize 1000 types of classes. 

This topology consists of 310 convolutional layers and fully-connected layers. For the 

training with transfer-learning, the first 172 convolutional layers of the network are frozen, 

and the output layer of Inception-V3 is a softmax activation with 1000 classes. In this study, 
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this layer is removed and replaced with a 10-class softmax layer, whereby this layer is trained 

together with the remaining dense layers for the application-centric classification of 10 types 

of toys. 

This network was implemented on the Ultra96 using the DNNDK framework, which 

employs a DPU module that allows high computation and easy access for heterogeneous 

programming. DNNDK consists of several tools such as DECENT and DNNC. DECENT is 

responsible for reducing the size of CNNs in terms of data, i.e., a model that is stored in 32-

bit floating point is quantized to 8 bits for each weight. By reducing this information, the size 

of the model is reduced, allowing an optimization in terms of computational efficiency, energy 

efficiency and less memory for the system, especially in bandwidth during data transmission 

from the host to the FPGA. DNNC is responsible for improving the resources used by the 

DPU by optimizing bandwidth and power consumption. 

DNNC uses the debugged DECENT model and applies optimized compilation and 

transformation techniques, such as compute node merging, efficient instruction scheduling 

and reuse of on-chip memory features and weights. 
 

2.4 Implementation of CNNs on GPU boards 

 

Two frameworks were used for the acceleration of CNNs on the Jetson TX2 GPU. In the 

first one, Nvidia TensorRT, Inception-V1 and AlexNet networks were implemented. 

TensorRT consists of two stages: training and inference. The training stage is mainly 

based on the use of Digits, where it is possible to manage and evaluate the data of the model 

by running it in the cloud or localhost. Once the training is complete, the trained weights are 

downloaded, and the inference is performed. In this study, the first stage was not performed, 

a previously trained model was obtained, and the optimization between the host and the 

device was performed for the inference stage.  

TensorRT, CUDA and cuDNN were used for the inference stage. TensorRT is an optimizer 

of a model trained using CUDA and cuDNN; thus, it achieves low latency, which is ideal for 

real-time applications. This framework provides a quantization operation for the GPU 

inference engine. The computational latency is shortened due to floating arithmetic 

operations, and, in order not to reduce the model’s mAP, the weights were quantized to 16-

bits at the inference stage.  

TensorRT modifies the size of the images before and after the inference process. Since 

this modification is computationally expensive on the CPU, the framework uses 

multithreading on the CPU to speed up the process. TensorRT creates two threads on each 

CPU core, and each thread processes one batch of data. The Jetson TX2 has 6 CPU cores, so 

TensorRT creates 12 threads. GPU inference can only run on a single thread; therefore, the 

framework takes inference as a mutual process, and the different threads must compete for 

the GPU. Finally, for the implementation of the Tinier-YOLO network, Darknet was used, 

which is an open-source framework for running convolutional neural networks where data 

are processed through C and CUDA for the computation between the CPU and the GPU. 

 
2.5. Implementation of classical machine learning algorithms for early childhood education 

applications 

 

The implementation of classical classifiers was performed using the same INSTRE 

database. The classifiers were implemented using Scikit-Learn instead of popular 

frameworks such as Keras and TensorFlow since the 32-Bit architecture of the NAO 

computing system does not allow the installation and configuration of these tools. This 
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restriction limits the execution of algorithms such as CNNs on the sequential system of the 

NAO robot, reducing its applicability in activities that require a greater understanding of the 

environment. Each pixel is used as one feature per frame, which means 200x200x3 features 

for the classification models. 

Four classical classification algorithms have been implemented in the literature for 

binary and multi-class object classification: Logistic Regression, Naive Bayes, Decision Tree, 

and Random Forest. Processing images, these models perform well when hyperparameter 

optimization is performed; however, this task is complex and depends on the characteristics 

of the dataset. CNNs, using their hidden layers, have the ability to select the most important 

features without difficulty, so better results are obtained in terms of accuracy when the 

dataset is considerably large. 

 
2.6. NAO backpack design 

 

This section describes the design of a backpack for NAO integrated into the back of the 

humanoid robot. This extension of NAO contains an Ultra96-V2 FPGA that runs 

computationally expensive algorithms such as CNNs. The selection of the embedded system 

used for the backpack design was based on its results in terms of frames per second (FPS) 

and higher accuracy in object classification. Considering the above, the Ultra96 FPGA 

obtained the best performance when running Inception-V1 with 30.3 fps and an 88.9 % top-

5 accuracy trained with the ImageNet database. Besides its results compared to those of the 

Jetson TX2, an important aspect is the size of the integrated system. The Ultra96 measures 

8.5 cm x 5.4 cm, while the Jetson TX2 measures 17 cm x 17 cm. 

Other authors [32] have proposed the implementation of a backpack for NAO that 

contains an ODROID XU4 running object classification algorithm. Nevertheless, when it ran 

ORB-SLAM2, it achieved 12 fps, which is below the benchmark for real-time applications. 

The execution of deep learning algorithms presented memory problems because the 

hardware was a Cortex™-A7 Octa-core microprocessor, which is sequential and is limited in 

its capabilities when it executes high computational cost algorithms such as CNNs.  

Given the above, the proposed scheme integrates an external computational system that 

improves the visual perception of the NAO humanoid robot in tasks that require high 

performance, autonomy, and mobility. The following subsections present the details of the 

design.  

 
2.7. Sizing the battery powering the embedded system 

 

The battery sizing was based on the power required by the Ultra96 FPGA, the power 

consumed when executing a CNN and the autonomy in relation to the time the humanoid 

robot will be active. Regarding the last factor, the reference point in this study is [32], which 

reports that, despite the 60 minutes offered by the battery included in NAO, in the Robo Cup 

Soccer competition, the autonomy of the robot is only 30 minutes. Therefore, the operating 

time of the Ultra96 FPGA was estimated at 50 minutes of activity. 

The input voltage of the Ultra96 is in the range from 8 V to 18 V, with a maximum current 

of 3 A. Although the FPGA only consumes 3.1 W in the inference stage, the power consumed 

is overestimated at 6 W. Taking these data into account, we proceed to calculate the power 

that should be delivered by the battery to be implemented based in (1), which is used to 

calculate the autonomy of a battery. 

 

𝑇 =  𝑊𝑏 /𝑊𝑐 (1) 
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where T is the autonomy time in hours; Wb, the power delivered by the battery; and Wc, 

the power consumed. The estimated autonomy of 50 minutes in hours equals 0.833 h. 

Considering the above, the power to be delivered by the battery is 4.998 W (Wb). 

The next step was selecting the battery based on the calculation of the desired power 

delivery and autonomy. We selected a LiPo (lithium polymer) battery, which is a rechargeable 

battery composed of identical secondary cells arranged in parallel to increase the discharge 

current capacity. It offers a high discharge rate, light weight, and small size. These 

characteristics were suitable for the proposed scheme (i.e., a backpack for the robot) because 

they can provide autonomy to the robot without affecting its mobility.  

 Once the type of battery to be used was selected, a search for different LiPo batteries 

available in the market was carried out. Based on the fact that the power delivered by the 

battery must be 4.998 W, we selected a commercial LiPo battery that delivers this capacity 

and whose output voltage is within the input voltage range for the Ultra96 FPGA (i.e., 8 V–

18 V). The chart in https://blog.ampow.com/lipo-battery-size-chart/, which details the 

electrical specifications of multiple LiPo batteries available in the market, was taken as a 

reference point. Since the delivered power must be 4.998 W and its dimensions are suitable 

for the application, a Lipo battery with 440 mAh of capacity and a voltage of 11.1 V was used 

here. The battery selection is based on the power calculation in (2): 

 

𝑃 =  𝑉 ∗  𝐼 (2) 

 

where P is the power; V, the voltage; and I, the battery current. Assuming that the 

battery voltage is 11.1 V, and the current is 0.45 A, a power of 4.99 W is obtained. 

After having the electrical specifications of the battery for the design, we searched for a 

commercial reference of a LiPo battery that met these power consumption needs. Although 

the electrical and size specifications of LiPo batteries are common among different 

manufacturers, the initial search retrieved the Gens Ace 450 mAh-11.1 V 3-cell battery, 

which was selected for this design. 

 

 
3. RESULTS AND DISCUSSION 

 

For the image acquisition and communication system, three different tests were 

performed varying the resolution of the acquired image and the encoding and decoding 

quality factor. In each test, we recorded data on the number of frames per second (fps) and 

the transmission rate measured in kbps (Kbits per second). Table 2 shows the results with 

different resolutions. It can be seen that, as the input image resolution increases, the frames 

per second decrease. However, the fps obtained by setting the image to the standard 

resolution of NAO’s camera (i.e., 640x480) are much higher than those expected for a real-

time application. By focusing the research work on the NAO humanoid robot, this resolution 

is taken as the entry point to the given data processing system for each heterogeneous 

architecture when running the CNN. 

On the other hand, concerning CNN implementations in embedded systems, the results 

were obtained in frames per second and power consumption. To evaluate the performance of 

the object detection system implemented in FPGA, a CNN was employed in the PipeCNN 

framework using an Intel® FPGA board.  
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Table 2. Fps and Kbps in image transmission and reception. Source: Created by the authors. 

Image 

resolution 

Transmission Reception 

kbps fps kbps fps 

1920x1080 

FullHD 
91452,3 20 91121,1 19 

640x480 VGA 10743,3 65 10534,6 63 

224x224 ImageNet 11342,3 128 11134,6 123 

 

The implemented CNN is a quantized version of AlexNet containing eight convolution 

layers executed on the FPGA. A result of 205 ms per image was obtained, which means that 

the FPGA can process 4.87 images per second. This implementation is not in real time 

because it is not in the range from 20 fps to 30 fps. 

Comparing the results in frames per second, [33] obtained 66 fps when they implemented 

PipeCNN; [34], 70 fps when they accelerated a CNN using CUDA on a Jetson Tx2; [35], 864.7 

fps when they implemented AlexNet on a Stratix-V; and [34], 11 fps, which is below what is 

required for a real-time application, when they implemented NCSDK on a Movidius. 

Power consumption results were estimated with Intel Quartus® Prime Power Analyzer 

software. The maximum number of computing units that can be implemented on the Cyclone 

V SoC is four. It can be seen from Table 3 that the resources used in this design are below 

the total numbers contained in the board. This occurs because the board contains only 4192 

LAB that are maxed out in this implementation. For this reason, it is not possible to increase 

the performance of the framework on the Cyclone V-SoC, unlike the implementation 

performed by [33] on the DE5-net platform, which does achieve real-time ranking since the 

platform is much larger in terms of resources. 

 
Table 3. PipeCNN framework resources in the Cyclone V SoC Development Kit  

Source: Created by the authors. 

PipeCNN 

Resources Used Available Utilization percentage 

LUT 48173 110000 43.79 % 

FF 66830 219144 30.50 % 

RAM 285 514 55.45 % 

DSP 35 112 31.25 % 

Power consumption 2.056 W 

 

For the second framework, the image was acquired with a high-resolution webcam in real 

time, which was done with the help of the OpenCV libraries installed by default in the PYNQ 

framework. In Figure 5, the top images show the humanoid robot NAO interacting in a 

virtual environment created by Webots. The bottom images show the object position boxes 

and the prediction of identified objects in the embedded systems. Figure 6 presents the 

detection of the same objects created in the virtual setting (i.e., a chair and a person) but in 

a real controlled environment.  
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Figure 5. Top: NAO interacting in the virtual environment. Bottom: chair and person detection on embedded 

systems. Source: Created by the authors. 

 

 
Figure 6. Detection of objects in a real environment. Source: Created by the authors. 

 

As a result, on the Ultra96, we obtained an execution time of 83 ms, which is equivalent 

to 12 frames per second and still below real-time execution. In comparison, in [19], 5 fps were 

obtained by implementing Tiny-YOLO on the Jetson Tx2, while, in [20], 21 fps were achieved 

by running the CNN on a VC707 FPGA. The results show that implementations of this same 
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CNN on different platforms present higher fps on the Tiny-YOLO executed on the Ultra96 

than on the Jetson Tx2, but a worse performance than another FPGA implementation. 

The amount of resources used in the Ultra96 is the same for any implementation since 

the MO architecture is topology-independent. It can be seen in Table 4 that the BRAM is at 

more than 90 % of the available resources on the board, but the utilization of the rest of the 

resources does not exceed 50 %. This is expected since FPGAs have little internal memory 

storage capacity. 

 
Table 4. Resources used in the implementation of the QNN framework on the Ultra96.  

Source: Created by the authors. 

FINN Framework 

Resources Used Available Utilization percentage 

LUT 
2975

4 
70560 42.17 % 

Register 
3605

0 
141120 25.55 % 

Block RAM 200 216 92.59 % 

DSP 56 360 15.56 % 

Power consumption 3.1 W 

 

In the application explored here, i.e., classification of toys for early childhood education, 

the modified implementation of the Inception-V3 network achieved a 98 % classification rate 

and a real-time performance of 27 fps. This architecture was implemented at a clock 

frequency of 370 MHz using the DPU. The SGD optimizer was used with a learning-rate of 

0.0001 and a momentum value of 0.9; category cross-entropy was employed as the cost 

function. For the training with transfer-learning, the first 172 convolutional layers of the 

network are frozen, and the output layer of Inception-V3 is a softmax activation with 1000 

classes. In this study, this layer is removed and replaced with a 10-class softmax layer, 

whereby this layer is trained together with the remaining dense layers for this application, 

which is focused on the classification of 10 types of toys. The training result obtained in Keras 

was converted to the DNNDK framework using the DECENT and DNNC tools, in which the 

elf file containing all the CNN information (weights and architecture) was created. During 

the inference, this file was read by the ARM of the FPGA SoC, which was in charge of sending 

the tasks to the DPU to process and the returned result. The resources used in the Ultra96 

for the QNN framework, and the IP DPU are shown in Table 5.  

 
Table 5. QNN framework and IP DPU Ultra96 FPGA resources. Source: Created by the authors. 

Resources QNN DPU Available 

LUT 29754 37055 70560 

Register 36050 72850 141120 

Block RAM 200 161,5 216 

DSP 56 290 360 

Power consumption 3.1 W - - 

 

Regarding the implementation of classical machine learning algorithms for early 

childhood education applications, a DELL computer with a 1.6-GHZ ATOM processor and 1 

GB of RAM was used for the inference stage of each of the classical classifiers implemented 

here. Table 6 presents the results of these classifiers in terms of accuracy and training time 

in seconds. For this application, each pixel is used as a feature; thus, each classification model 
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has 200x200x3 features. Table 6 indicates that, by training each of the classical classifiers, 

an accuracy between 70 % and 85 % was obtained in the validation set. 

 
Table 6. Accuracy and training time of classical classifiers. Source: Created by the authors. 

Model Accuracy (%) Training time (s) 

Naive Bayes 0.54 0.02 

Logit 0.84 4.96 

Decision Tree 0.76 0.59 

Random Forest 0.81 2.97 

 

Table 7 compares the performance of CNN-FPGA/GPU and classical algorithms run on 

the sequential system of the NAO humanoid robot. For the inference tests, five random 

images were taken from the test database. It can be seen that running the Inception-V1 and 

Inception-V3 transfer-learning architectures yields real-time results. The opposite case 

occurs with the remaining implementations, where the frames per second were well below 

those established for a real-time application. In the case of the Tinier-YOLO CNN executed 

on the FPGA and GPU, despite the quantification of its weights, lower fps was obtained, but 

the FPGA was able to process more images per second than the GPU for this convolutional 

neural network architecture. On the other hand, the sequential system of the NAO humanoid 

robot has processing limitations when classical computer vision techniques are executed. 

Despite the fact that they are much lighter models, the maximum that the NAO CPU 

could process was 3.95 fps with Decision Tree. This limitation arises because each pixel is 

used as a feature by each classification model, which has 200x200x3 features (input image 

size). Finally, since CNNs are larger architectures, the NAO processing system would be 

restricted in computing each of the layers and weights contained in a CNN. 

Table 7 shows that, when it performs the inference, the embedded system takes 0.037 

seconds, which is equivalent to 27 fps.  

 
Table 7. Comparison of execution times and fps of a CNN (on two FPGAs and one GPU) vs. classical techniques 

(on an Intel® Atom Z530 CPU). Source: Created by the authors. 

Hardware 

type 

Development 

board 
Architecture Model 

Execution 

time (s) 

Frame 

rate (fps) 

FPGA 

Cyclone V-SoC 

CNN 

AlexNet 0.200 4.87 

Ultra96 

Tinier-YOLO 0.083 12.04 

Inception-V1 0.033 30.30 

Inception-V3 

transfer learning 
0.037 27.02 

GPU Jetson TX2 

Tinier-YOLO 0.100 9.86 

Inception-V1 0.035 28.50 

AlexNet 0.035 28.50 

CPU 
Intel Atom 

Z530 

Classical 

techniques 

Decision Tree 0.253 3.95 

Logit 0.504 1.98 

Naive Bayes 9 0.0001 

Random Forest 0.316 3.16 
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4. CONCLUSIONS 

 

In this paper, we presented a system to improve the visual perception in humanoid robots 

in autonomous applications by integrating heterogeneous architectures based on a GPU or a 

FPGA running a CNN. Three CNNs (Alexnet, Inception-V1, and Tinier-YOLO) were used to 

select the architecture in the final implementation. We evaluated the performance of the 

Xilinx Ultra96-V2 FPGA, Intel Cyclone V SoC FPGA, and Nvidia Jetson TX2 GPU platforms 

when running these CNN models. The Ultra96 achieved 12 fps when running Tinier-YOLO 

at 3.1 W, while the Jetson TX2 achieved 9.86 fps and a power consumption of 7 W; their input 

was an image with a size of 640x480 pixels, which is the standard resolution of the NAO 

humanoid robot’s camera. In our application on the Inception-V1 CNN, real-time results were 

obtained with heterogeneous architectures on two FPGAs (i.e., Intel Cyclone V SoC and 

Ultra96-V2), while the expected behavior was obtained when AlexNet was run on the Jetson 

TX2. In terms of accuracy, the Inception V1 network presents the best performance (88.9 %) 

and low resource consumption when implemented on the Ultra96. On the other hand, in 

Table 7, it can be observed that the available resources are sufficient when CNN is 

implemented, opening the possibility of implementing larger network architectures. 

Considering the above and the results in terms of execution time and power consumption, 

the Ultra96 FPGA was selected for the design of the backpack for NAO. 

Despite the implementations of deep learning models in the conventional computational 

system of humanoid robots reviewed in the introduction, processing times during object 

recognition are affected by the high computational cost required by deep learning models 

such as CNNs. The integration of a CNN and a heterogeneous FPGA- or GPU-based 

architecture in humanoid robots can provide these automatons with real-time visual 

perception enhancement that can be exploited in human-robot interaction applications. In 

this study, we solved three problems: (1) reducing the execution time and improving the 

accuracy of object detection in an everyday environment while maintaining the autonomy of 

the robot; (2) creating a system that can be replicable to humanoid robots such as Pepper and 

Robotis OP3; and (3) producing a development that can be used to integrate heterogeneous 

architectures with a high degree of parallelism, low power consumption and small size that 

execute a CNN and can be easily integrated into the structure of any humanoid robot using 

a backpack. 

In this study, simulation tools were used to prototype a virtual environment—that 

includes a humanoid NAO robot and objects around it—and then send the image to each of 

the embedded systems to perform object classification or detection. One point to consider is 

that virtual environments do not consider all the possible factors that in real environments 

may affect the performance of the system. However, in this application, other tests were 

carried out in real environments, obtaining a good performance. Considering the above, in 

future work, we will implement the system developed here in real conditions considering 

other external factors and a real-life application. We also aim to examine the quantification 

of convolutional neural networks in greater depth. Since CNNs are computationally 

expensive, quantization is an open research topic because the size of the network is expected 

to be reduced considerably without losing accuracy. With this reduction in size, CNNs are 

expected to be more easily implemented in embedded systems that can be integrated into 

humanoid robots such as NAO. Furthermore, NAO’s depth sensor could be used to calculate 

the actual distance of the object once it has been detected by the CNN. This could extend the 

robot’s capabilities in human–robot interaction tasks. 
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