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Abstract 

The increasing penetration of Distributed Energy Resources has imposed several challenges 

in the analysis and operation of power systems, mainly due to the uncertainties in primary 

resource. In the last decade, implementation of Battery Energy Storage Systems in electric 

networks has caught the interest in research since the results have shown multiple positive effects 
when deployed optimally. In this paper, a review in the optimization of battery storage systems 

in power systems is presented. Firstly, an overview of the context in which battery storage systems 

are implemented, their operation framework, chemistries and a first glance of optimization is 

shown. Then, formulations and optimization frameworks are detailed for optimization problems 

found in recent literature. Next, A review of the optimization techniques implemented or proposed, 

and a basic explanation of the more recurrent ones is presented. Finally, the results of the review 
are discussed. It is concluded that optimization problems involving battery storage systems are a 

trending topic for research, in which a vast quantity of more complex formulations have been 

proposed for Steady State and Transient Analysis, due to the inclusion of stochasticity, multi-

periodicity and multi-objective frameworks. It was found that the use of Metaheuristics is 

dominant in the analysis of complex, multivariate and multi-objective problems while relaxations, 

simplifications, linearization, and single objective adaptations have enabled the use of traditional, 
more efficient, and exact techniques. Hybridization in metaheuristics has been important topic of 

research that has shown better results in terms of efficiency and solution quality. 

 

Keywords 
Formulations of optimization problems, metaheuristics, convex optimization, battery storage 

systems, power systems. 

 

Resumen 
La creciente penetración de recursos distribuidos ha impuesto desafíos en el análisis y 

operación de sistemas de potencia, principalmente debido a incertidumbres en los recursos 

primarios. En la última década, la implementación de sistemas de almacenamiento por baterías 

en redes eléctricas ha captado el interés en la investigación, ya que los resultados han demostrado 

efectos positivos cuando se despliegan óptimamente. En este trabajo se presenta una revisión de 

la optimización de sistemas de almacenamiento por baterías en sistemas de potencia. Pare ello se 
procedió, primero, a mostrar el contexto en el cual se implementan los sistemas de baterías, su 

marco de operación, las tecnologías y las bases de optimización. Luego, fueron detallados la 

formulación y el marco de optimización de algunos de los problemas de optimización encontrados 

en literatura reciente. Posteriormente se presentó una revisión de las técnicas de optimización 

implementadas o propuestas recientemente y una explicación básica de las técnicas más 

recurrentes. Finalmente, se discutieron los resultados de la revisión. Se obtuvo como resultados 
que los problemas de optimización con sistemas de almacenamiento por baterías son un tema de 

tendencia para la investigación, en el que se han propuesto diversas formulaciones para el análisis 

en estado estacionario y transitorio, en problemas multiperiodo que incluyen la estocasticidad y 

formulaciones multiobjetivo. Adicionalmente, se encontró que el uso de técnicas metaheurísticas 

es dominante en el análisis de problemas complejos, multivariados y multiobjetivo, mientras que 

la implementación de relajaciones, simplificaciones, linealizaciones y la adaptación mono-objetivo 
ha permitido el uso de técnicas más eficientes y exactas. La hibridación de técnicas  

metaheurísticas ha sido un tema relevante para la investigación que ha mostrado mejorías en los 

resultados en términos de eficiencia y calidad de las soluciones. 

 

Palabras clave 
Formulaciones de problemas de optimización, metaheurísticas, optimización convexa, 

sistemas de almacenamiento por baterías, sistemas de potencia. 
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Acronyms 

 
DER Distributed Energy Resources REL Relaxation of non-convex equations 

RES Renewable Energy Systems GAMS General Algebraic Modeling System 

PV Solar Photovoltaic Systems MINLP 
Mixed-Integer Non-Linear 

Programming 

WE Wind Energy Systems WOA Whale Optimization Algorithm 

FC Fuel Cells SA Simulated Annealing 

HEE Hydro-Electrical Systems ABC Artificial Bee Colony 

BESS Battery Energy Storage Systems MFABC Multi-Strategy Fusion ABC 

LIB Lithium-ion Battery MFABC+ Hybridized MFABC and SA 

EV Electric Vehicles HHO Harris Hawks Optimizer 

ANN Artificial Neural Networks AOA Arithmetic Optimization Algorithm 

SoH State of Health hHHO-AOA Hybridized HHO and AOA 

SoC State of Charge SOCP Second Order Cone Programming 

DN Distribution Network FA Firefly Algorithm 

TN Transmission Network HFPSO Hybridized FA and PSO 

UPQC Unified Power Quality Conditioner ICSO 
Inherited Competitive Swarm 

Optimization 

PID 
Proportional-Integral-Derivative 
Controller 

MAG-PSO Multi-Agent Guiding PSO 

FOPID Fractional Order PID MFO Moth Flame Optimization 

MPC Model Predictive Controller MMFO Modified MFO 

PFR Primary Frequency Regulation GOA Grasshopper Optimization Algorithm 

DoD Depth of Discharge MOGOA Multi-Objective GOA 

DR Demand response MOGWO Multi-Objective GWO 

PSO Particle Swarm Optimization TSIO Two-Stage Interval Optimization 

GA Genetic Algorithm DHHO 
Developed Harris Hawks 
Optimization 

MULTI Multi-Objective Optimization ADMM 
Alternating Direction Method of 
Multipliers 

MILP Mixed-Integer Linear Programming DC-ADMM Dual-Consensus version of ADMM 

STOC Stochastic Optimization WOAGA Hybrid WOA-GA 

GWO Grey Wolf Optimization MOWOAGA Multi-Objective WOAGA 

BLO Bi-Layer Optimization BWOA Black Widow Optimization Algorithm 

RO Robust Optimization HSMGWO 
Hybridized Halton sequence and 

Social Motivation Strategy GWO 

ML Machine Learning ASO Atom Search Optimization 

OPF Optimal Power Flow 
ALA-
mQPSO 

Hybridized Adaptive Local Attractor-
based and Quantum-behaved PSO 

MH Metaheuristics IPM Interior-Point Methods 

NSGA 
Nondominated Sorting Genetic 

Algorithm 
GDM Gradient Descent Methods 

B&B Branch and Bound method NM Newton’s Method 

TOPSIS 
Technique for Order Preference by 

Similarity to Ideal Solution 
  

RPNS 
Reference-Point-Based Non- Dominated 

Sorting 
  

GSA Gravitational Search algorithm   

CPSOGSA 
Hybridized Chaotic map algorithm with 
PSO and GSA 
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1. INTRODUCTION 

 

Distributed Energy Resources (DER) is a term given to the set of energetic resources that 
are operated in a decentralized way and are typically, but not necessarily exclusively, driven 

by uncertain primary resources, like Renewable Energy technologies (RES) such as Solar 
Photovoltaic (PV) and Wind Energy (WE), or more predictable ones like Hydrogen Energy 

with Fuel Cells (FC) or Hydro-Electrical Energy (HEE) with micro turbines [1]–[5].The 

Penetration of DER in power systems has been thrusted recently by a decrease in 
technological costs, advancements in communication and information technologies, and the 

social drive to increase efficiencies in energy production, transportation, and consumption 

with reduced environmental impacts [1], [6] – [8]. This momentum has brought not only 
technical challenges in its implementation due to the inherent uncertain nature and the 

mixture of their primary resources [6], [9] – [12], but also changes in the operational 
frameworks of energy markets due to the decentralized fashion of its implementation and 

new market agents taking part in energy transactions [13], [14]. During the last decade, these 

challenges have been faced and extensive research has been published, allowing to find new 
operational structures, technical advantages, and also new questions to be answered. For 

example, multiple studies have shown how technically advantageous can be the 

implementation of DER in distribution networks in terms of power loss reduction, voltage 
regulation, network loadability, network capacity, system flexibility, frequency regulation, 

Demand Response, Curtailment, maximization of profit, or minimization of 

costs [10], [15] – [23]. However, analysis of DER in power systems is usually performed 
assuming certainty conditions (by means forecasts, study-cases, static behavior, or 

linearization), thus limiting the scope of obtained results, or by implementing variability 
compensation systems in the effort to increase the inertial response during electricity supply 

[24] or the stability [25], [26], for instance, using Battery Energy Storage Systems (BESS), 

flywheels or hydro-pumped storage [13]. 
Battery Energy Storage Systems BESS, whose technology is part of DER even though they 

cannot be considered as proper generation, have the particularity to behave dually: can 

operate as a load (withdraw energy) or as a support for generation (analogous to a generator). 
During BESS operation, it storages (charges) or releases (discharges) energy obtained from 

an external source through electrochemical processes. This behavior, together with the 
flexibility in controllability and power ramping rate, make their operation especially useful 

to provide supplementary services in the operation of power systems [27].  The efficiency 

during operation varies depending on the chemistry and energy density of the unit, i.e., 
between 72.5 % and 85 % efficiency with energy density ranging between 20 Wh/kg and 

30 Wh/kg for Lead-Acid, 85 % − 95 % with 90 Wh/kg − 190 Wh/kg for Lithium-Ion, 72.5 % 

and 86 % with 150 Wh/kg − 240 Wh/kg Sodium-Sulphur, and 60 % − 72.5 % with 

15 Wh/kg − 30 Wh/kg for Redox Flow [28]. Although Lead-acid is now a mature technology 

and provides availability and good efficiency at lower costs, research has been made in 

different technologies (chemistries) to overcome some of the downsides (i.e., low cycle life, low 
energy density, and the highly reduced life cycle under high depths of discharge and 

temperature [29]). Lithium-ion technology (LIB) shows up as an alternative that not only 
overcomes some of the mentioned downsides, but also enhances the upsides, by increasing the 

energy density and the cycle life at least fourfold while improving the efficiency. However, LI 

life cycle is strongly dependent on temperature and, together with its higher capital costs, 
might limit its implementation in utility scale applications [30]. Even though LI-BESS is not 

yet competitive when implemented for ancillary services in power systems, the increasing 

participation of Electric Vehicles EV (LI main market is now EV) in the electric demand share, 
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the implementation of Vehicle-to-Grid frameworks and the sustained reduction in costs 

shown since 2013 [28] would make LIB viable for on-grid implementation in few years [31]. 
As mentioned before, BESS are mainly implemented to provide additional services to 

power systems either in transmission or distribution [27]. Those services can be classified into 

technical (where the main concern is to improve the power quality), and economical (increase 
of profits, reduction of costs) [32], within several timeframes. In Table 1, some services and 

the timeframe are reviewed. 

Modelling BESS for its implementation in power systems has been realized using diverse 
methods depending on the objective of analysis and its timeframe. For instance, in [27] a 

Three Time Constant model based in state estimation is proposed in the context of primary 
frequency and local voltage regulation. In [67], a nonlinear model is proposed for LI batteries 

using a Hammerstein-Wiener model. Machine Learning techniques (ML) such as Artificial 

Neural Networks (ANN) are also used to model BESS when data is available [68]. If the 
chemistry is not considered, BESS can be modelled using efficiency in steady state operation. 

In [69], an internal resistance model is proposed for efficiency, while in [70] similar structures 

for particular chemistries are studied including the State of Health (SoH), State of Charge 
(SoC) and power in longer term contexts.  

BESS integration in active distribution networks, or microgrids, is usually analyzed in 

static BESS frameworks, this means that their mobility is not considered. However, Mobile 
BESS, MBESS, defines a new structure for operation for BESS, in which different solutions 

sets for its location, the status (charging, discharging, idle, or transport), and the costs for 
mobilizing such systems are considered to optimize network operation. Formulating the 

problem under this operational structure has shown several advantages in comparison with 

static BESS (Fewer losses, less active and reactive power drawn from substations, and 
improvements in voltage profiles) [71]. 

To examine the steady state effects of DER on active distributed networks, or microgrids, 

an optimal power flow study is typically performed, formulating the set of nonlinear equations 
resulting from circuit analysis, defining the operational constraints, such as voltage limits, 

transformer capacities or line current limits, and objective functions, which all depend on the 
decision variables.   

 
Table 1. Ancillary services provided by BESS, adapted from [28]. Source: Created by the author. 

Service Category Timeframe References 

Transient Voltage Stability Technic (Power Quality) Very Short (ms) [33],[34],[35] 

Harmonic Mitigation Technic (Power Quality) Very Short (ms) [36],[37],[38] 

Peak load and generation 

mitigation 
Technic (Power Quality) Very Short (ms) [39],[40] 

Primary Frequency Control Technic (Power Quality) 
Very Short – Short 

(ms-s) 
[41],[27],[42] 

Virtual Inertia Technic (Power Quality) Short (s) [43],[44],[45] 

Black start Technic (Power Quality) Short(s) [46] 

RES variability mitigation Technic (Power Quality) Medium (min.) [47],[21],[48] 

Voltage Management Technic (Power Quality) Medium (min.) [49],[50],[51] 

Secondary Frequency Control Technic (Power Quality) Medium (min.) [52] 

Demand Response Technic /Economic Long (hrs.) [53],[22],[20] 

Energy arbitrage Economic Long (hrs.) [54],[55],[56] 

Off-grid Operation 
Technic/Economic 

(self − consumption) 
Long (hrs.) [57],[58],[59] 

Power Loss minimization Technic (efficiency) Long (hrs.) [60],[61],[62] 

Congestion Relief Technic (Power Quality) Long (hrs.) [63],[64],[65] 

Distribution and Transmission 

deferral 
Economic Long (hrs.) [66] 
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Regardless of DER technology and the corresponding efficiencies based either on 

construction or operation, either uncertainties, objective function definition, or the modelling 
of the operation of the DG units might bring non-convexities to optimal power flow 

formulation, and with it, increased complexity in the steady-state analysis of the system. 

Then, additional effort is then needed to analyze the system if the objective function(s) and/or 
any (or every) additional operational constraint has concave properties in a minimization 

sense of the problem. Therefore, the way the problem is formulated for analysis defines the 

way it will be solved, and consequently how efficiently it will get to a solution, i.e., in the 
optimal dispatch of generators if costs or load shaving schemes are defined for even shorter 

periods, complex topologies and great dimensions in the power system. If this occurs, then 
metaheuristic techniques (MH) are useful and powerful tools to find approximate (to global) 

solutions regardless of the formulation [28]. However, some non-linear functions are convex, 

and some non-convex equations can be relaxed to ensure convexity and, consequently its 
exactness, if additional constraints are added [72]. MH techniques are general algorithmic 

frameworks that can be applied to a wide variety of problems, some of them very complex, 

making few modifications in the implementation [73]. These techniques are often inspired in 
phenomena observed in the nature and transformed into algorithms that usually start from 

random initial states and apply the specific search strategy to find solutions that converge 

the objective(s) function(s) close to a global minimum in complex problems, in a reasonable 
amount of time [74]. Consequently, due to the heuristic nature of the search strategy, global 

solutions and exactness are not guaranteed. 
In this paper, a review on in optimization methods for operation and implementation of 

BESS in power systems is presented, and after this introduction, some of the most recent 

optimization problems regarding BESS operation for ancillary services and their formulations 
are surveyed in section BESS Optimization Problems. Subsequently, methods used to find 

the solution are reviewed and categorized with convexity as main criteria and if relaxations 

were implemented. Finally, results, discussion, and conclusions are presented in their 
respective sections. 

 
 

2. OPTIMIZATION PROBLEMS 

 
As mentioned in in the previous section, there is an ample variety of applications of BESS 

implemented to provide services in power systems, in which the optimization of decision 

variables will provide the technical, economic, or mixed benefits expected from such 
frameworks.  In this section, the formulation objective functions are reviewed in the context 

of the ancillary services provided with BESS.  

 
2.1 Voltage Control 

 
Objective functions are defined subject to the type of analysis to be carried out, being 

classified as transient or steady-state analysis. In Transient Voltage analysis, BESS 
operation is optimized to reduce voltage deviations in contingencies [75], [76]. An objective 

function can be defined starting with a formulation for voltage deviations, as it is shown in (1). 

 

𝑅𝑘𝑗
𝑡 = |

𝑉𝑘𝑗
𝑡 −𝑉𝑗

0

𝑉𝑗
0 | ×100%, 𝑗 = 1,… ,𝑁   ,    𝑡 = 1, … , 𝑇 (1) 
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Where 𝑉𝑘𝑗
𝑡 is the voltage magnitude in the node j at time step t and contingency k, and 𝑉𝑗

0 

is the pre-fault initial voltage magnitude. Then an average severity index 𝑆𝐼𝑘 is formulated 
to classify the magnitude of the deviations 𝑅𝑘𝑗

𝑡  by averaging them for each contingency k as 

in (2). If in any contingency case k, node j or period t no reliability standard (i.e., 
NERC/WECC, Grid codes [77]) is violated, then 𝑅𝑘𝑗

𝑡 = 0. 

 

𝑆𝐼𝑘=
1

𝑇 × 𝑁
∑ 𝑅𝑘𝑗

𝑡

𝑡∈𝑇,𝑗∈𝑁

 
(2) 

 

The objective is then formulated in (3) by complementing the severity index with a 

maximum voltage recovery sensitivity parameter (Voltage Sensitivity Index VSI), which 

depends on BESS injected var 𝑞𝑒𝑠,𝑖 (𝑁𝑒𝑠 refers to the number of BESS units).  

 

𝑉𝑆𝐼𝑖𝑗
𝑘 =

𝑚𝑎𝑥
𝑡
{𝑉𝑗

𝑘,𝑛𝑒𝑤,𝑡 −𝑉𝑗
𝑘,𝑜𝑙𝑑,𝑡}

∑ 𝑞𝑒𝑠,𝑖𝑖∈𝑁𝑒𝑠

, 𝑡 = 1,… ,𝑇 

(3) 𝑉𝑆𝐼𝑖
𝑘 =

1

𝑁
∑𝑉𝑆𝐼𝑖𝑗

𝑘

𝑗∈𝑁

 

 max (𝑉𝑆𝐼𝑖 = ∑𝑆𝐼𝑘
𝑘∈𝐾

𝑉𝑆𝐼𝑖
𝑘) 

 

Equation (3) is desired to be optimized in the sense of maximization because it is expected 

for the node voltage in fault conditions to drop to zero (short-circuit). The problem is 
constrained to the defined number of BESS units (𝑁𝑒𝑠) using the binary variable zi shown 

in (4) indicating if the unit is located in node i or not. 

 

∑𝑧𝑖
𝑖∈𝑁

= 𝑁𝑒𝑠 (4) 

 
In steady state analysis, the aim is to achieve voltage regulation either by imposing grid 

code limits, by defining a voltage profile to be follow or by supporting transmission operation 
with local voltage support in distribution networks [78]. If the aim is to follow a voltage profile, 

a squared 2-norm for voltage deviations is defined in (5) as minimization objective [79] by 

controlling generated reactive power and lossless power flow equations (constraints): 
 

𝑚𝑖𝑛

𝑉,𝑞𝑔, 𝑃,𝑄
   
1

2
||𝑽−𝝁||2

2 (5) 

 

Where the parameter 𝝁 defines the voltage profile to be followed. In [80], the BESS 
apparent power injection is controlled to minimize voltage deviations in pure distribution 

network (DN) nodes and to track voltage references given by transmission network operator 

(TN) in nodes interfacing both networks (TN-DN). The objective function (6) was formulated 
as a function of the active and reactive power in BESS assuming a linearized model in which 

the power losses are negligible. 
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𝑚𝑖𝑛

𝑝𝑏(𝑡), 𝑞𝑏(𝑡)
∑

𝛾

2
𝐶1(𝑝

𝑏(𝑡), 𝑞𝑏(𝑡)

𝑡∈𝑇

) +
𝜔

2
𝐶2(𝑝

𝑏(𝑡), 𝑞𝑏(𝑡)) (6) 

 

This objective is composed of two cost functions. 𝐶1 correspond to the voltage tracking 
strategy in interfacing TN-DN nodes, formulated as a squared 2-norm in (7), while 𝐶2 
represents a cost function for BESS dispatch in (8). 

 

𝐶1 (𝑝
𝑏(𝑡),𝑞𝑏(𝑡)) = ||�̅�(𝑡) − 𝑅𝑝𝑏(𝑡) + 𝑋𝑞𝑏(𝑡)− 𝑣𝑠𝑒𝑡(𝑡)||2

2 (7) 

𝐶2(𝑝
𝑏(𝑡), 𝑞𝑏(𝑡))=

1

2
 𝒑𝑏(𝑡)𝑇𝑅𝒑𝑏(𝑡) +

1

2
 𝒒𝑏(𝑡)𝑇𝑋𝒒𝑏(𝑡) (8) 

 

Where, γ and ω are defined as positive weights to balance voltage regulation (in 𝐶1) and 

power provision cost (in 𝐶2) respectively. Vectors 𝒑𝑏 and 𝒒𝑏 are the net power balance between 

generation and demand. This operation is constrained to SOC, BESS apparent power and 
node voltage limits, and SOC operation constraints. 

In [81], BESS units are allocated in an unbalanced distributed network to minimize power 

losses and voltage deviations. To formulate the objectives, the authors define two cases, when 
no wind turbines and BESS are present in the network, and the base case without DER units. 

Voltage Deviations are calculated for every node i, timestep t for each phase K as in (9), and 
then a phase average deviation voltage is calculated in (10). The objective is formulated as 

shown in (11).  

 

𝑉𝑑
𝐾 =∑|1 −

∑ 𝑉𝑖
𝐾(𝑡)𝑡∈𝑇

𝑇
|

𝑖∈𝑁

 (9) 

𝑉𝑑 =
𝑉𝑑
𝑅 + 𝑉𝑑

𝑌+ 𝑉𝑑
𝐵

3
 (10) 

𝑚𝑖𝑛

𝑃𝑏(𝑡),𝑄𝑏(𝑡), 𝑆𝑂𝐶(𝑡)
 
𝑉𝑑
(𝑊𝑇+𝐵𝐸𝑆𝑆)

𝑉𝑑
(𝐵𝑎𝑠𝑒)  (11) 

 

This problem is constrained by power flow balance equations, per phase Voltage and 

Current limits, and SOC limits. 
 
2.2 Harmonic Mitigation 
 

This service is nowadays closely tied to the implementation of DER in power systems, due 

to the many DC/AC conversions occurring in power electronic stages.  In [82], a control 

strategy is presented to compensate power quality issues in a system with Hybrid RES 

(PV−WE and BESS) by means of a Unified Power Quality Conditioner (UPQC) specified to 
address PQ issues. The controller architecture is Fractional Order PID (FOPID), and its 

parameters are optimized to minimize errors in a double feedback control loop (voltage and 
current errors). The proposed strategy is assessed for power quality when RES is active and 

inactive, and for Total Harmonic Distortion when RES is inactive. Additionally, cases with 

non-linear load variation, unbalanced nonlinear load, Voltage and Current sag, voltage and 
current swell and voltage disturbances were included in the assessment. Optimization takes 
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place to estimate parameters (gains) in FOPID and improve controller’s response in error 

elimination, response speed and overshoot mitigation. 
 

2.3 Black Start 

 

BESS can be used to restore service in power generation plants when required. However, 

BESS overcharge or undercharge are to be avoided in order to preserve its State of Health 
(SoH) and maximize its life cycle. In [83], a stratified optimization strategy is proposed to use 

BESS-PV systems for operation restore. If a black start instruction is received, the controller 
begins its operation by retrieving historical data regarding the PV system, weather forecasts, 

and actual data of PV, Load and BESS status. For the defined black start period, a Least 

Square Support Vector Machine is implemented to predict based on historical data of PV and 
weather forecasts the expected PV power and probabilities for power generation based on 

limits and the actual state.  Following probabilities and predictions, the controller decides if 

the service should begin or not. If the system is capable of providing the service, then a Model 
Predictive Controller (MPC) decides the action control (BESS and PV power) optimizing two 

cost functions based on the availability of PV resources, as shown in (12), and safe operation 

of BESS as in (13). 
 

𝑚𝑖𝑛

𝑷(𝑘)
 

 
∑(𝑁𝑟(𝑘+ 1)𝑃𝑃𝑉𝑈(𝑘+ 1)− 𝑃𝐿(𝑘+ 1)− ∆𝑃)

2

𝑘∈𝑀

 (12) 

𝑚𝑖𝑛

𝑬(𝑘)
 

 
∑ (𝐸𝐵𝐸𝑆𝑆(𝑘+ 1)− 𝐸𝐵𝐸𝑆𝑆𝐿)

2

𝑘∈𝑀

 (13) 

 

In (12), 𝑁𝑟 is the number of PV units to be active, 𝑃𝑃𝑉𝑈 is the predicted power of PV per 

unit, 𝑃𝐿 the load power (𝑃𝑃𝑉 +𝑃𝐵𝐸𝑆𝑆) and ∆𝑃 is a compensation factor formulated in (14). 
 

∆𝑃 = 𝑃𝑃𝑉 −𝑁𝑟(𝑘)𝑃𝑃𝑉𝑈(𝑘) (14) 
 

In (13), 𝐸𝐵𝐸𝑆𝑆 is the BESS capacity (energy) and 𝐸𝐵𝐸𝑆𝑆𝐿 is the ideal BESS capacity. This 

problem is constrained to meet power balance equations, BESS and PV power limits, BESS 
SOC limits, and the PV units number limit. 

 
2.4 Frequency Control 

 

As frequency deviations occur mainly due to the mismatch between generation and 
demand in transient periods, control strategies are then often implemented to overcome them. 

In [84], a control for Primary Frequency Regulation (PFR) is proposed based on Dead−Band 

setting, in which the power in BESS units is modulated based on a control strategy depending 
on frequency deviations, BESS state of Charge SOC and condition. First, three types of dead 

band are defined: No dead band, ordinary dead band, and enhanced dead band.  The first one 

directly maps the frequency input to the output frequency. The second one, sets the output 
frequency to the frequency deviation plus the threshold frequency when the frequency 

deviation is less than a negative threshold, and removes the threshold value to the deviation 

in the output when the deviation is greater the positive threshold. If the absolute value of the 
frequency deviation is less or equal than the threshold, then the output frequency is zero. In 
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the third type, the output frequency is set to the value of the deviation if the absolute value 

of the deviation is greater than the threshold, or zero otherwise. A fourth type of dead band 
is proposed based on the SOC of the BESS unit. This action defines a piecewise function for 

the dead band using different dead band thresholds, to obtain output frequency. Then, the 

authors define when BESS should act: if the frequency deviation is zero, then the BESS is not 
acting, when the deviation exceeds zero, then the unit is charging (greater demands represent 

decreases in frequency), and when the frequency deviation is negative, then the BESS is 

discharging (lower demands represents increases in frequency). To constraint how the BESS 
operates during charge or discharge an alpha parameter is created for both operation modes 

to modulate the rate of charge/discharge when the unit is required for frequency regulation. 
The rate of charge of BESS (when frequency deviations are greater than zero) will decrease 

the closer the SOC gets to a maximum value. The absolute value of the parameter alfa-c (the 

c stands for charge) is maximum (|-1|) if the actual SOC of the unit is less than 75 %, 
otherwise the rate of charge decreases exponentially until it is charged to the maximum value 

of SOC and alpha-c gets a zero value. When frequency deviations are negative, then the unit 

will discharge at a maximum rate if the SOC is higher than 25 %, and the alpha-d (the d 
stands for discharge) is maximum (one). Otherwise, the rate of discharge decreases 

exponentially until it reaches zero level and stops its frequency regulation. The output 

frequency is then following the piecewise map and the amplitude is modulated by the alpha 
value. 

Finally, the authors propose two optimization frameworks: optimize parameters for the 
piecewise function (find optimal values for threshold, load conditions and dead band values) 

and optimize parameters for SOC alpha values. For those optimization problems, two 

objective functions were defined: the root mean squared (rms) values for SOC in (15) and 
frequency deviation in (16). 

 

𝑆𝑂𝐶𝑟𝑚𝑠 = √
1

𝑇
∑(𝑆𝑂𝐶𝑡−𝑆𝑂𝐶𝑎𝑣𝑔)

2

𝑡∈𝑇

 (15) 

𝑓𝑟𝑚𝑠 = √
1

𝑇
∑(𝑓𝑡 −𝑓𝑟𝑒𝑓)

2

𝑡∈𝑇

 (16) 

 

Where 𝑓𝑡 −𝑓𝑟𝑒𝑓 represents the frequency deviation at time t, 𝑆𝑂𝐶𝑡  the state of charge in 

time t and 𝑆𝑂𝐶𝑎𝑣𝑔 the average SOC in period T.  

In [85], a BESS optimal operation problem is defined for a single node providing PFR, in 
which the benefits are to be maximized in intra-day operation. The profit is defined in three 

dimensions: demand supply, PFR service provision and BESS cycling (aging). The demand to 

be supplied by BESS is defined in (17) as the difference between the power load (PL) and the 
power generation (PG) and modulated by electricity prices (Ep) at any given time. 

 
𝐵𝑠𝑢𝑝𝑝𝑙𝑦 = 𝐸𝑝× (𝑃𝐿−𝑃𝐺) × ∆𝑡 (17) 

 
The benefit from PFR service provision is defined in (18) by the power capacity to provide 

the service (𝑃𝑓) and the PFR clearing price (𝐸𝑃𝐹𝑅): 

 
𝐵𝑃𝐹𝑅 = 𝐸𝑃𝐹𝑅× 𝑃𝑓 × ∆𝑡 (18) 
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The benefit from BESS aging is represented in (19) by the optimal operation of BESS 
maximizing its life (mitigation of charge and discharge cycles, SOC) considering the 

efficiencies as in (20). 

 

𝐵𝑎𝑔𝑒 = 𝐶𝑎𝑔𝑒× 𝑃𝑏 × 𝜂 × ∆𝑡 (19) 

𝜂 = {

𝜂𝑐  𝑓𝑜𝑟 𝑃𝑏 ≥ 0 
−1

𝜂𝑑
 𝑓𝑜𝑟 𝑃𝑏 < 0

 (20) 

 
The objective function is built in (21) by aggregating the benefits. 

 
𝑚𝑎𝑥

𝑷(𝑡), 𝑪(𝑡)
 

 
𝐵𝑠𝑢𝑝𝑝𝑙𝑦+𝐵𝑃𝐹𝑅 −𝐵𝑎𝑔𝑒 (21) 

 

The optimization is later reformulated including a stochastic sequential decision process 
for intra-day operation strategy. The objective function is then defined in (22) to maximize 

the expected benefits after deciding based on initial states. 
 

𝑚𝑎𝑥

𝒙
 

 
𝐸 {∑𝐶𝑡(𝑆𝑡 ,

𝑡∈𝑇

𝑋𝑡)|𝑆0,𝑃𝑓}  

𝑆𝑡 = (𝑆𝑂𝐶(𝑡),𝐸𝑝(𝑡),𝑃𝐿(𝑡),∆𝑓(𝑡)) (22) 

𝑋𝑡 = 𝑷(𝑡)  

 
2.5 Demand Response 
 

In [86], the objective is to minimize the cost of operating a PV-BESS system by accounting 

the costs of importing energy from the grid, the cost of PV generation, the cost of BESS cycle 
depreciation and the costs of selling (exporting) energy to the grid as shown in (23). 

 
𝑚𝑖𝑛

𝑪(𝑡), 𝑺(𝑡)
 

 
∑𝑆𝑔𝑟𝑖𝑑−𝑖𝑛𝐶𝑔𝑟𝑖𝑑−𝑖𝑛+ 𝑆𝑝𝑣𝐶𝑝𝑣+𝑆𝐵𝐸𝑆𝑆𝐶𝐵𝐸𝑆𝑆−𝑆𝑔𝑟𝑖𝑑−𝑜𝑢𝑡𝐶𝑔𝑟𝑖𝑑−𝑜𝑢𝑡
𝑡∈𝑇

 (23) 

 

Where 𝑪(𝑡) represents the corresponding cost matrix for each operational item considered 
in the objective function, as it is shown in (24), and 𝑺(𝑡) the binary state matrix for each 

component (working or shutdown states). 

 

𝑪(𝑡) =

(

 
 
 
 

𝐶𝑔𝑟𝑖𝑑−𝑖𝑛= 𝑃𝑔𝑖𝑛 × 𝑥𝑔𝑖𝑛×∆𝑡

𝐶𝑝𝑣 = 𝑃𝑃𝑉× 𝑥𝑝𝑣̅̅̅̅ ̅ ×∆𝑡

𝐶𝐵𝐸𝑆𝑆 =

∑ (
𝐷
𝐷𝑅
)
𝑢0
𝑒
𝑢1(

𝐷
𝐷𝑅
−1)𝐶𝑅

𝐶𝐴
𝑑𝑎𝑐𝑡𝑡∈𝑇

Γ𝑅
× 𝑥𝑏

𝐶𝑔𝑟𝑖𝑑−𝑜𝑢𝑡 = 𝑃𝑔𝑜𝑢𝑡 ×𝑥𝑔𝑜𝑢𝑡 ×∆𝑡 )

 
 
 
 

 (24) 
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Where 𝑃𝑦 is the active power and 𝑥𝑦 is the corresponding cost for the system y, namely 

Grid-in: electricity tariff, PV: average cost of PV generation, BESS: total cost of the BESS 
system and Grid-out: Feed in Tariff for PV exports. Γ𝑅 is the rated life of BESS, 𝐷 and 𝐷𝑅 are 

the actual and the rated Depth of Discharge (DoD) respectively. 𝐶𝑅 is the rated amp-hour 

capacity at rated discharge current and 𝐶𝐴 is the actual discharge ampere-hour capacity of 

BESS. Finally, 𝑑𝑎𝑐𝑡 is the actual ampere hour discharge. 
The cost function for BESS includes a model for Battery cycling aging based on cycle state 

of charge (𝑆𝑂𝐶 = 1−𝐷𝑂𝐷) and charge/discharge dynamics relative to rated values. This 

problem is constrained to power balance and BESS power and SOC limits. The status of Grid-
in and Grid-out can’t be operative (a logical one) at the same time. In [87], a similar structure 

for costs is presented and a model for Demand Response scheme is formulated, where it is 
desired to minimize operational costs, as in (25), for a WE-PV-BESS in a distribution network. 

Costs are defined for the power flow balance between utility and distribution companies, RES 

curtailment and sell energies, BESS energy during charge and discharge, and Demand 
response Scheme (DR).  

 
𝑚𝑖𝑛

𝑪(𝑡)
 

 
𝐶𝑈𝑡𝑖𝑙𝑖𝑡𝑦+ 𝐶𝑅𝐸𝑆_𝑠𝑒𝑙𝑙+𝐶𝑅𝐸𝑆_𝑐𝑢𝑡+ 𝐶𝐵𝐸𝑆𝑆− 𝐶𝐷𝑅 (25) 

 
Power balance is defined to be as it is shown in (26).  

 
𝑃𝑅𝐸𝑆_𝑐𝑢𝑡+ 𝑃𝐿𝐷_𝐷𝑅 = 𝑃𝑃𝑉+𝑃𝑊𝐸+ 𝑃𝑈𝑡𝑖𝑙𝑖𝑡𝑦+ 𝑃𝐵𝐸𝑆𝑆 (26) 

 
Besides power balance, the problem is also constrained by the maximum power (for 

discharge and charge), the SOC and the efficiencies in BESS. 
 
2.6 Power Loss 

 

In [88], the location and operation of BESS in a distributed network with PV and WE 

penetration is studied.  The authors formulated three objectives to be minimized, as it is 
shown in (27), voltage fluctuations, power losses (described by (28)) and the total capacity of 

BESS to be allocated (defined in (29) and (30)). 

 

min∑𝑃𝑙𝑜𝑠𝑠(𝑡)

𝑡∈𝑇

  

min∑∑|𝑉𝑖(𝑡) − 𝑉�̅�|

𝑡∈𝑇𝑖∈𝑁

 (27) 

min ∑ 𝐸𝐵𝐸𝑆𝑆(𝑘)

𝑘∈𝑁𝐵𝑒𝑠𝑠

  

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝑟𝑠 [(∑𝑃𝑘 −𝑃𝐵𝐸𝑆𝑆
𝑘∈𝑁

)

2

+ (∑𝑄𝑘
𝑘∈𝑁

)

2

]

𝑠∈(𝑖,𝑗)

+ ∑ 𝑟𝑠 [(∑𝑃𝑘
𝑘∈𝑁

)

2

+(∑𝑄𝑘
𝑘∈𝑁

)

2

]

𝑠∈(𝑖,𝑗)

 (28) 

 

The 𝐸𝐵𝐸𝑆𝑆(𝑘) stands for the rated capacity of the kth BESS unit. BESS model includes self-
discharge rate σ, efficiencies λ, and SOC. 
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𝑆𝑂𝐶(𝑡) = (1− 𝜎∆𝑡)𝑆𝑂𝐶(𝑡 − 1) +
𝑃𝑐(𝑡)𝜆𝑐∆𝑡

𝐸𝐵𝐸𝑆𝑆
 (29) 

𝑆𝑂𝐶(𝑡) = (1 − 𝜎∆𝑡)𝑆𝑂𝐶(𝑡 − 1)−
𝑃𝑑(𝑡)∆𝑡

𝐸𝐵𝐸𝑆𝑆𝜆𝑑
 (30) 

 

The problem is constrained to a five percent nodal voltage limit, power flow balance 
equations, active and reactive power limits in lines, Charge balance in BESS and SOC limits. 

The location of BESS units is represented with integer variables. It is defined that the initial 

SOC must be the same as the final, and it is set to 40 %. 
 
2.7 Off-grid Operation 

 

In [89], the operation of a Hybrid Renewable Energy microgrid (HREM) is optimized to 
minimize three objective functions in a muti-objective framework, The levelized Cost of 

Energy (LCOE), The Loss of Power Supply Probability (LPSP), and Greenhouse Gas 

Emissions (GHGE) shown in (31) − (35) respectively. This microgrid counts with PV, HEE, 

and conventional Diesel generation. Demand is divided in agricultural and residential. 
 

min 𝐿𝐶𝑂𝐸 =
𝑇𝐿𝐶𝐶𝐻𝐸𝐸+𝑇𝐿𝐶𝐶𝑃𝑉+ 𝑇𝐿𝐶𝐶𝐵𝐸𝑆𝑆+𝑇𝐿𝐶𝐶𝑑𝑖𝑒𝑠𝑒𝑙

∑ 𝑃𝑙𝑜𝑎𝑑(𝑡)𝑡∈𝑇 ∆𝑡
 (31) 

 

Where TLCC stands for the Total Life Cycle Cost, and it is calculated for each generator 
type based on the capital cost, Operation and Maintenance (O&M) costs, interest rates and 

lifetime of each system. 

 

min 𝐿𝑃𝑆𝑃 =
∑ 𝑃𝑙𝑜𝑎𝑑(𝑡)𝑡∈𝑇 +𝑃𝐵𝐸𝑆𝑆−𝐶(𝑡) − 𝑃𝑠𝑢𝑝𝑝𝑙𝑦(𝑡)

∑ 𝑃𝑙𝑜𝑎𝑑(𝑡)𝑡∈𝑇
 (32) 

𝑃𝑠𝑢𝑝𝑝𝑙𝑦(𝑡) = 𝑃𝐻𝐸𝐸+𝑃𝑃𝑉(𝑡) + 𝑃𝑑𝑖𝑒𝑠𝑒𝑙(𝑡) + 𝑃𝐵𝐸𝑆𝑆−𝐷(𝑡) (33) 

 

The terms 𝑃𝐵𝐸𝑆𝑆−𝐷(𝑡) and 𝑃𝐵𝐸𝑆𝑆−𝐶(𝑡) correspond to the power during discharge and charge 
in BESS. 

 

min𝐺𝐻𝐺𝐸 =∑𝐹𝐶𝑑𝑖𝑒𝑠𝑒𝑙(𝑡)𝐸𝐹𝐺𝐻𝐺
𝑡∈𝑇

 (34) 

 

The GHGE objective depends on the fuel consumption of the diesel machine and the 
emission factor for each Greenhouse Gas. 

 
𝐸𝐹𝐺𝐻𝐺 = 𝐸𝐹𝐶𝑂2 +𝐸𝐹𝐶𝐻4 +𝐸𝐹𝑁2𝑂 +𝐸𝐹𝑁𝑂𝑥 + 𝐸𝐹𝐶𝑂 (35) 

 

The decision variables are the dimension (size) of each generator. The problem is 
constrained to the power limits of each generator (energy for BESS), the generation-load 

active power balance and SOC limits. 
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2.8 RES Variability Mitigation 
 

In [90], a bi-layer optimization framework is proposed to optimally integrate PV 

generation in distribution system utilizing BESS systems. In the first layer, the power losses 
in the network shown in (36), reverse power flow described in (37) and node voltage deviation 

in (38) are defined as objective functions for minimization. 

 

min (∑∑𝛼𝑖𝑗(ℎ) (𝑃𝑖𝑃𝑗(ℎ)+ 𝑄𝑖𝑄𝑗(ℎ))+ 𝛽𝑖𝑗(ℎ)(𝑄𝑖𝑃𝑗(ℎ)− 𝑄𝑖𝑃𝑗(ℎ))

𝑗∈𝑁𝑖∈𝑁

) 

(36) 

𝛼𝑖𝑗(ℎ) =
𝑟𝑖𝑗 cos(𝛿𝑖(ℎ) − 𝛿𝑗(ℎ))

𝑉𝑖(ℎ)𝑉𝑗(ℎ)
,𝛽𝑖𝑗(ℎ) =

𝑟𝑖𝑗 sin(𝛿𝑖(ℎ) − 𝛿𝑗(ℎ))

𝑉𝑖(ℎ)𝑉𝑗(ℎ)
, 𝑖 ≠ 𝑗, ∀ℎ ∈ 𝑇 

min (𝑃𝑟𝑒𝑣(ℎ) = {
𝑟𝑒𝑎𝑙(𝑉𝐺𝐼𝐺

∗(ℎ)); 𝐼𝐺 < 0
0;                         𝐼𝐺 ≥ 0

), ∀ℎ ∈ 𝑇 (37) 

min (1+∑|𝑉𝑟𝑒𝑓 −𝑉𝑖(ℎ)|

𝑖∈𝑁

) , ∀ℎ ∈ 𝑇 (38) 

 

This problem is constrained by power flow balance equations and Current, RES power, 
BESS capacity and SOC limits. SOC are constrained also by efficiencies. In the second layer, 

Annual Energy Loss, Load Deviation Index (LDI) and BESS utilization are defined as 

objective functions as depicted in (39). 
 

min(365∑∑∑𝛼𝑖𝑗(ℎ) (𝑃𝑖𝑃𝑗(ℎ) +𝑄𝑖𝑄𝑗(ℎ))+ 𝛽𝑖𝑗(ℎ)(𝑄𝑖𝑃𝑗(ℎ) −𝑄𝑖𝑃𝑗(ℎ))

𝑗∈𝑁𝑖∈𝑁ℎ∈𝑇

)  

min(√
1

24
∑(𝑃𝐷̅̅ ̅ − 𝑃𝐷(ℎ))

2

ℎ∈𝑇

) (39) 

min |∑𝑃𝑖,𝑏𝑒𝑠𝑠−𝐶(ℎ)

ℎ∈𝑇

−∑𝑃𝑖,𝑏𝑒𝑠𝑠−𝑑(ℎ)

ℎ∈𝑇

| ∀ℎ ∈ 𝑁  

 

Where 𝑃𝐷̅̅ ̅ and 𝑃𝐷(ℎ) are the mean demand and the actual demand at hth hour. 𝑃𝑖,𝑏𝑒𝑠𝑠−𝐶(ℎ) 

and 𝑃𝑖,𝑏𝑒𝑠𝑠−𝐷(ℎ) represent the BESS charging and discharging power in the node i and hour h 

respectively. 

 
2.9 Cost/profit Optimization 

 
In [91], BESS operation is optimally scheduled by maximizing revenues from energy 

generation and minimizing energy purchasing costs and battery degradation as it is shown 

in (40). 
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𝑚𝑎𝑥

𝑃𝑏𝑒𝑠𝑠−𝐶, 𝑃𝑏𝑒𝑠𝑠−𝐷
 

 
(∑𝑅(𝑡)

𝑡∈𝑇

−∑𝐶𝑏𝑢𝑦(𝑡) − 𝐶𝐵𝐸𝑆𝑆_𝐷𝑎𝑦
𝑡∈𝑇

) (40) 

 
Where 𝑅(𝑡) is the revenue, 𝐶𝑏𝑢𝑦 the cost of purchasing energy, and 𝐶𝐵𝐸𝑆𝑆_𝐷𝑎𝑦 is the cost for 

BESS degradation in a day, as it is shown in (41) and (42) respectively. 

 

𝑅(𝑡) = 𝛿(𝑡) ×𝑃𝑠𝑒𝑙𝑙(𝑡) × ∆𝑡 (41) 

𝐶𝑏𝑢𝑦(𝑡) = 𝛾(𝑡) × 𝑃𝑏𝑢𝑦(𝑡) × ∆𝑡 (42) 

 

Where 𝛿(𝑡) and 𝛾(𝑡) represent the energy selling and buying prices at time t, respectively. 
𝑃𝑠𝑒𝑙𝑙(𝑡) and 𝑃𝑏𝑢𝑦(𝑡) are power exports and imports to/from external network. The Cost for daily 

BESS degradation is defined implementing DOD, maximum cycle number and parameters 
fitted from annual capital discount rate. This problem is constrained by active power balance 

and SOC limits including efficiencies. The status of BESS is defined by integer variables 

representing charge or discharge statuses. 
 

 

3. OPTIMIZATION TECHNIQUES 

 

As can be observed in the optimization problem section, recent studies implement analysis 

techniques depending on the formulation of the problem and the timeframe. In this section, 
a review from the most encountered optimization techniques and frameworks in recent 

manuscripts is presented. For this, a search in Web of Science is performed with the key *bess 
AND optimization, filtered for results published from 2019 on. The date of the search is 

04/27/2022. From the search results is possible to see that research in optimization of BESS 

has been increasing and it can be expected to at least be equal as 2021, as can be observed in 
Figure 1 (results of 2022 correspond to the research published until the date of search and  

some programmed publications which are not yet published at the date of search). 

The list of results is reduced to 200, and a list of optimization techniques and frameworks 
is obtained from abstracts. This information is filtered and presented ordered by the 

appearance count in the right side of Table 2., while in the left side, optimization methods (or 
frameworks If optimization is performed indirectly) are tagged with the base technique if 

modifications or hybridizations are proposed.  

 
3.1 Metaheuristics 

 
From Table 2 could be observed that PSO- and GA- based optimization methods have been 

predominantly used to find solutions to optimization problems related to BESS 

implementations and to compare new proposed techniques. In this subsection, the working 
principle of the most recurrent techniques is briefly explained. 
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Figure 1. Publications in BESS optimization from Web of Science search. Source: Created by the author. 

 
Table 2. Labeled technique count (left), Specific techniques count (right). Source: Created by the author. 

Technique/Framework 

Label 
Count 

Proposed 

Technique 
Count 

PSO 36 MPC 5 

GA 26 SOCP 4 

MULTI 20 MAG-PSO 2 

MILP 15 DC-ADMM 2 

STOC 14 ICSO 2 

GWO 13 HHO-AOA 1 

BLO 12 HFPSO 1 

RO 10 MMFO 1 

ML 10 MOGOA 1 

REL 7 MOGWO 1 

PID 6 MFABC 1 

GAMS 6 TSIO 1 

MPC 6 DHHO 1 

MINLP 6 MOWOAGA 1 

WOA 6 MFABC+ 1 

 
3.1.1  Particle Swarm Optimization  

 

Particle Swarm Optimization (PSO) was first proposed by Kennedy and Eberhart in 1995, 
inspired by the natural choreography of birds flocking or fish schooling [92]. In this case 

particles (elements belonging to the swarm population) modify their initial random path 

(direction) using two criteria: the best location found by the particle and the best location 
found by the swarm. To do this so, this method defines the particle velocity to represent the 

direction in which the particle will be moving within the search space. The velocity of a 

particle k of the swarm of population N at the step m+1 (iteration) is given by (43). 
 

𝑣𝑚+1
𝑘 = 𝜔𝑣𝑚

𝑘 + 𝑐1𝑟1(𝑝
𝑘− 𝑥𝑚

𝑘 )+ 𝑐2𝑟2(𝑔− 𝑥𝑚
𝑘 ) (43) 
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Where 𝑣𝑚+1
𝑘  is the velocity of the particle (initialized random) at the next step, 𝑣𝑚

𝑘  is the 
velocity at the current step, ω is the inertial coefficient of the particle (weights particle 

tendency to continue his own direction), 𝑐1 is the cognitive acceleration constant (weights 

particle’s tendency to follow the direction of the best place it has ever found), 𝑐2 is the social 

acceleration constant (weights particle’s tendency to follow the direction of the best place the 
swarm has ever found), 𝑟1  and 𝑟2 are random real numbers between zero and one. 𝑥𝑚

𝑘 , 𝑝𝑘 and 

𝑔 are the actual position of the particle k, the best position found by the particle k and the 

best position found by the swarm respectively, 𝑔 and 𝑝𝑘 positions are related to the value of 

the decision variables when the objective function reached best global and best particle values 
respectively. The position of each particle is updated after updating each particle’s velocity as 

in (44). 

 

𝑥𝑚+1
𝑘 = 𝑥𝑚

𝑘 +  𝜒𝑣𝑚+1
𝑘  (44) 

 
Where χ is called constriction factor. This technique has been implemented in the 

optimization of different problems regarding BESS implementations, e.g. optimal sizing 
and/or allocation of BESS for power loss [93]–[96], voltage deviations [97], DER variability 

and peak demand reduction [98], optimal capacities for reliability and low cost objectives in 

autonomous AC grid design [99], Smart backup battery design for DER efficiency[100], BESS 
efficiency and life improvement [101], optimal micro grid (MG) operation under demand 

response schemes optimizing BESS capacity and costs [102]. 

 
3.1.2  Genetic Algorithm 
 

Genetic Algorithms (GA) have been developed by Holland since 1965 based on the concept 

natural selection from Darwin’s Origin of Species. GA are population-based techniques, in 
which fittest individuals are prone to be selected and from this selection of individual 

(reproduction), crossover occurs, expecting to obtain new generations of individuals with 

better genetic properties (traits). After crossover, the process of mutation takes place 
modifying randomly some genetic contents in individuals of each new generation according to 

a predefined mutation probability [103]. Firstly, the fitness function is calculated for each 
individual, usually by computing the objective function value plus penalties for constraints 

violations. Then individuals are selected using weighted roulette wheel, in which the fitness 

value for each individual is weighted, and individuals are selected for reproduction (parent 
individuals) probabilistically according to their weight in the roulette. Decision variables are 

initialized randomly and then coded into a single binary string.  

During crossover, the binary string is divided in two sections and the position (k) for this 
division is selected randomly within the size of the binary string. Then two child strings are 

obtained by keeping the first part of the string of one parent and replacing the second part 

with the corresponding string part of the second parent, and vice versa. The crossover 
mechanism is shown in (45). 

 

𝑃1 = 0 1 1 0 1 

(45) 

𝑃2 = 1 0 0 1 1 

𝑘 = 2 
𝐶1 = 0 1| 0 1 1 

𝐶2 = 1 0 |1 0 1 

 



D. Mendoza-Osorio  TecnoLógicas, Vol. 26, nro. 56, e2426, 2023 

Página 18 | 32 

As it could be observed in Table 2, newer techniques based on GA have been developed 

and implemented in the optimization in power systems with BESS, e.g., DER performance 
improvements with smart backup branch [104] or by optimizing the degradation rate of BESS 

[105], microgrid cost reductions including RES and load uncertainty and battery 

degradation[106], optimal allocation and sizing of BESS for primary frequency control in 
isolated power systems [107] and electric vehicle station costs and emissions reductions [108], 

the integration of DER and BESS in distribution networks for multiple objectives, namely 

power loss, voltage deviation, peak demand [95] voltage stability and installation, operational 
and emission costs [104], BESS operation for power loss reductions [94], safe and economical 

operation of distribution networks with BESS, DER and electric vehicle integration [109], 
among others. 

 
3.1.3  Grey Wolf Optimizer 

 

Grey Wolf Optimizer (GWO) is a metaheuristic technique proposed by [110], inspired by 
the social and hunting behavior of Grey Wolves. In this algorithm, the solutions found in each 

iteration are hierarchized according to their fitness function value. Similarly, as in wolf packs, 

the fittest solution is denominated alpha (α), and subsequently solutions are assigned as beta 
(β) and delta (δ) in that order. The rest of the solutions are denominated omega (ω) solutions. 

This denomination prioritizes the search for better solutions. In the same way wolves encircle 
the prey in nature, GWO algorithm emulates this behavior when searching for better new 

solutions. The position of alpha, beta and delta wolves remains unchanged and omega 

solutions are modified to get closer to each of the three leader wolves. Firstly, for every k 
omega solution the distance with respect to the leaders is calculated as in (46). 

 

𝐷∝
𝑘,𝑡 = |𝑐1𝑥∝− 𝑥𝑘

𝑡 | 

(46) 𝐷𝛽
𝑘,𝑡 = |𝑐2𝑥𝛽− 𝑥𝑘

𝑡 | 

𝐷𝛿
𝑘,𝑡 = |𝑐3𝑥𝛿−𝑥𝑘

𝑡 | 

 

Then three positions are defined based on 𝐷∝
𝑘, 𝐷𝛽

𝑘, 𝐷𝛿
𝑘 as in (47).  

 

𝑥1
𝑘,𝑡 = 𝑥∝−𝑎1𝐷∝

𝑘,𝑡 

(47) 𝑥2
𝑘,𝑡 = 𝑥𝛽 −𝑎2𝐷𝛽

𝑘,𝑡 

𝑥3
𝑘,𝑡 = 𝑥𝛿 −𝑎3𝐷𝛿

𝑘,𝑡
 

 

Where 𝑎1, 𝑎2 and 𝑎3 are random vectors, and vectors 𝑐1, 𝑐2 and 𝑐3 are set randomly in the 

range between zero and two as in (48) and (49) respectively.  
 

𝑎𝑥 = 2𝑎𝑟1 −𝑎 (48) 

𝑐𝑥 = 2𝑟2 (49) 
 

Where 𝑟1  and 𝑟2 are vectors between zero and one and 𝑎 is vector linearly decreasing from 

two to zero during iterations. Then the position of the omega solutions is updated as in (50) 
by averaging the positions mentioned in (47). 
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𝑥𝑘
𝑡+1 =

𝑥1
𝑘,𝑡+𝑥2

𝑘,𝑡 +𝑥3
𝑘,𝑡

3
 (50) 

 

Exploitation and exploration of the search space is controlled by 𝑎𝑥 vectors. If for a solution 

the absolute value of 𝑎𝑥 is greater than one, then exploration is preferred, otherwise the 
exploitation is performed. Therefore, it is expected that for the first half of iterations the 

program should be mainly exploring, while during last part of the program the exploitation 

should be dominant. This is analogous to the search for the prey (exploration) and the attack 
to the prey (exploitation) behaviors. 

This algorithm has been used to find optimal BESS capacities for reliability and low cost 

objectives in autonomous AC grid design [99], the optimal sizing and/or allocation of BESS 
for power loss [111] and voltage deviations [97], Smart backup battery design for DER 

efficiency, BESS efficiency and life improvement [101], the optimal allocation of Electric 
vehicles charging station with DER and BESS integrations to reduce energy losses, voltage 

deviations and investments and maintenance costs[112], Unified Power Quality Conditioner 

control for Hybrid DER with BESS to increase system performance during voltage and 
current sag, real reactive power quality and total harmonic distortions [82], [113], the optimal 

operational strategy for BESS integration in microgrid to reduce the cost of power, the failure 

of energy contribute, the probability of deposit power [114] and the implementation of BESS 
in droop regulated islanded microgrid considering probabilistic modelling of DER for annual 

operation and maintenance cost, emissions and power loss reductions [115], and others. 

 
3.1.4  Whale Optimization Algorithm 
 

Whale Optimization Algorithm (WOA) is a technique proposed by Mirjalili and Lewis in 

2016 inspired in the foraging behavior of Humpback whales [116]. The authors propose a 
similar strategy for encircling, attacking, or searching for prey as in GWO, but executed 

differently. In WOA the prey is represented directly by the global fittest solution (𝑥∗). 
In GWO exploration (search for pray) or exploitation (attacking the prey) is performed 

directly using the equation for position update based on 𝑎𝑘. Each k agent (whale) will encircle, 

attack (exploit) or search (explore) for the pray based on a random p factor (between zero and 

one) and the respective 𝑎𝑘 vector value. If the random value p is less than 0.5, then the agents 

will encircle or search for the pray depending on the absolute value of 𝑎𝑘 (if |𝑎𝑘|< 1 the agent 
will encircle. It searches for the prey otherwise). If the value of p is greater or equal than 0.5 

then the agent will attack the prey. For encircling, search and attack, a different strategy for 
updating position is executed. If the agent is to encircle the prey, then its updated position 

will depend on the distance between the position of the agent and 𝑎𝑘 value, as in (51). Its 

formulation is shown in (52). 
 

𝐷𝑘,𝑡 = |𝑐𝑘𝑥
∗− 𝑥𝑘,𝑡| (51) 

𝑥𝑘,𝑡+1 = 𝑥
∗ −𝑎𝑘𝐷𝑘,𝑡 (52) 

 

If the agent is to search for the prey, then the position of the agent is updated calculating 
the distance to another agent selected randomly, as in (53). The new position is described 

in (54). 
 

𝐷𝑘,𝑡 = |𝑥
∗− 𝑥𝑘,𝑡| (53) 
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𝑥𝑘,𝑡+1 = 𝐷𝑘,𝑡𝑒
𝑏𝑙 cos(2𝜋𝑙) + 𝑥∗ (54) 

 

The vectors 𝑎𝑘 and 𝑐𝑘 are calculated similarly as in GWO, where 𝑎 is vector linearly 

decreasing from two to zero during iterations, as shown in (55) and (56) respectively, and the 

𝑟 vector is unified. 
 

𝑎𝑘 = 2𝑎𝑟 − 𝑎 (55) 

𝑐𝑘 = 2𝑟 (56) 

 
The parameter 𝑏 in (53) defines the shape of the spiral and 𝑙 is a random number between 

minus one and positive one. This technique has been implemented in the optimization of 

different problems regarding BESS implementations, e.g., optimal sizing and/or allocation for 
power loss minimization [93], [104], [117], Smart backup battery design for DER efficiency 

[100], Microgrid operation to reduce operational costs, namely Diesel fuel, power exchange 

and BESS costs, while maximizing the benefit [118]. 
 
3.1.5  Harris Hawk Optimization 

 

Harris Hawk Optimization (HHO) based algorithms have also been proposed in the latest 
studies. This technique is inspired in the foraging behavior of the Harris Hawk and was 

proposed in [119]. Similar as in WOA, the foraging is divided in exploration and exploitation 

phases based on a criterion known as the energy of the prey, shown in (57), that decreases 
linearly from two to zero with the iterations and have random initial states defined in (58). 

In HHO the best solution found is assigned as the prey (𝑥∗). If the absolute value of the energy 

of the prey is big, then the hawk will execute exploration, or exploitation otherwise. 
 

𝐸 = 2𝐸0(1−
𝑡

𝑇
) (57) 

𝐸0 = 2𝑟6 −1 (58) 

 

Where 𝐸0 initial energy based on the random parameter 𝑟6, ranging from minus one to one 
in each iteration 𝑡. Exploration and exploitation are performed differently depending on 

random parameters (from zero to one). During exploration, the random parameter 𝑞 defines 

the exploration strategy to be carried out. If 𝑞 is greater or equal to 0.5, then a strategy of 

perching based on random locations is performed. The exploration is based on the position of 
other hawks otherwise following the averaged position of all agents. The update of the 

position of the agents during exploration is executed following (59). The average position of 
the hawks is described by (60). 

 

𝑥𝑘,𝑡+1 = {
𝑥𝑟𝑎𝑛𝑑,𝑡− 𝑟1|𝑥𝑟𝑎𝑛𝑑,𝑡−2𝑟1𝑥𝑘,𝑡|                         𝑞 ≥ 0.5

(𝑥∗ −𝑥𝑚,𝑡)− 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵))            𝑞 ≥ 0.5
 (59) 

𝑥𝑚,𝑡 =
1

𝐾
∑𝑥𝑘,𝑡
𝑘∈𝐾

 (60) 
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Where 𝑟1 , 𝑟2, 𝑟3 and 𝑞 are random numbers from zero to one. 𝑥𝑚,𝑡 is the average position of 

the population and 𝑈𝐵, 𝐿𝐵 are the maximum and minimum locations of the population, 

respectively. During exploitation, the energy of the prey and a random parameter 𝑟 control 

the way the hawk attacks the prey. If 𝑟 ≥ 0.5 and 0.5 ≤ |𝐸| < 1, then the hawk performs a soft 
besiege, updating its position in direction to the difference of positions between the agent and 

the prey ∆𝑥 modulated by ∆𝑥 and the strength of the prey to jump and scape the attack 𝐽. If 
𝑟 < 0.5 and |𝐸| ≥ 0.5 the hawk can update its position either by soft attacking the prey (update 
its position based on the location of the prey, the strength 𝐽 and the position of the hawk) or 

by attacking the prey following the Levy Flight function imitating leapfrog movements on the 

prey (soft besiege with progressive rapid dives). Firstly, the decision is made by evaluating 

the objective function of the updated solution when soft-attacking (𝐹(𝑥𝑘,𝑡+1)) and comparing 

it with the objective function value of the original solution (𝐹(𝑥𝑘,𝑡)). If 𝐹(𝑥𝑘,𝑡+1) < 𝐹( 𝑥𝑘,𝑡) then 

the updated solution is assigned for the next iteration. If the previous condition is not met, 

then the objective function value for the updated solution based on the Levy Flight function 
is now compared against the objective value of the original solution and if the condition 

𝐹(𝑥𝑘,𝑡+1) < 𝐹( 𝑥𝑘,𝑡) is met, then the updated solution is assigned for the next iteration. If 

neither condition is met, then the original solution is preserved. These behaviors are 
described in (61). The jump strength and the position difference are calculated as in (62) and 

(63) respectively. 

 

𝑥𝑘,𝑡+1 =

{
 
 

 
 
∆𝑥 −𝐸|𝐽𝑥∗−𝑥𝑘,𝑡|                                            𝑟 ≥ 0.5 ;  0.5 ≤ |𝐸| < 1

𝑌                                            𝐹(𝑌) < 𝐹( 𝑥𝑘,𝑡);  𝑟 < 0.5 ;  0.5 ≤ |𝐸| < 1

𝑍                                            𝐹(𝑍) < 𝐹( 𝑥𝑘,𝑡);  𝑟 < 0.5 ;  0.5 ≤ |𝐸| < 1

𝑥𝑘,𝑡                            𝐹(𝑍), 𝐹(𝑌) < 𝐹( 𝑥𝑘,𝑡) ;  𝑟 < 0.5 ; 0.5 ≤ |𝐸| < 1

 
               

(61) 

𝑌 = 𝑥∗ −𝐸|𝐽𝑥∗−𝑥𝑘,𝑡| 

𝑍 = 𝑥∗− 𝐸|𝐽𝑥∗− 𝑥𝑘,𝑡|+ 𝑆 × 𝐿𝐹(𝐷) 

 

Where 𝐿𝐹(𝐷) is a levy flight function, imitating leapfrog movements [120]. 𝑆 represents a 
random vector of size 𝐷. 𝐷 stands for the problem dimension (search space). 
 

𝐽 = 2(1− 𝑟5) (62) 

∆𝑥 = 𝑥∗ −𝑥𝑘,𝑡 (63) 

 

If 𝑟 ≥ 0.5 and |𝐸| < 0.5, then the hawk performs hard besiege by updating its position 

getting close to the prey depending on the energy of the prey and the absolute value of ∆𝑥. If 

𝑟 < 0.5 and |𝐸| < 0.5 then the agent decides of the update strategy similarly as in soft besiege 
strategy, but utilizing instead of the agent position, the averaged position of the population. 

This behavior is described in (64). 
 

𝑥𝑘,𝑡+1 =

{
 
 

 
 
𝑥∗− 𝐸|∆𝑥|                                                                   𝑟 ≥ 0.5 ; |𝐸| < 0.5

𝑌                                            𝐹(𝑌) < 𝐹( 𝑥𝑘,𝑡); 𝑟 < 0.5 ; |𝐸| < 0.5

𝑍                                            𝐹(𝑍) < 𝐹( 𝑥𝑘,𝑡); 𝑟 < 0.5 ; |𝐸| < 0.5

𝑥𝑘,𝑡                            𝐹(𝑍) ∧ 𝐹(𝑌) < 𝐹( 𝑥𝑘,𝑡) ;   𝑟 < 0.5 ; |𝐸| < 0.5

 

(64) 

𝑌 = 𝑥∗ −𝐸|𝐽𝑥∗− 𝑥𝑚| 

𝑍 = 𝑌 + 𝑆 × 𝐿𝐹(𝐷) 
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This technique has been implemented in problems regarding BESS implementations, e.g., 

optimal sizing and/or allocation of BESS for power loss reductions, investment costs 
reductions, primary frequency control [107], voltage deviations, optimal capacities for 

reliability and low cost objectives in autonomous AC grid design [99], Sizing and design of 

autonomous microgrids with DER, conventional Diesel generators and BESS for reduction in 
energy costs and loss of power supply probability [121], optimal allocation of Electric vehicles 

charging station with DER and BESS integrations to reduce energy losses, voltage deviations 

and investments and maintenance costs [112], and others. 
Having in mind the overview in ancillary services shown in Table 1, the review on 

optimization problems, the techniques shown in Table 2 and the total results of the search, 
Optimization problems are related to implemented techniques following the number of 

occurrences in the search and are shown in the color maps displayed in Figure 2. 

 
3.1.6  Multiobjective Optimization 

 
As observed in Table 2, the multi-objective formulation of the optimization problems 

regarding BESS in power systems has been of interest in the last three years. Multiple 

objectives are typically handled by reducing the objective space dimension assigning a weight 
to each objective and aggregating them in a single objective. This allows the optimization 

problem to be reduced in complexity and depending on the formulation a solution can be found 
using exact methods (convex optimization) very efficiently. However, the optimization with 

metaheuristic allows higher than one dimensions in the objective space, since fitness 

functions can be adapted for each objective function and multiple search strategies based on 
pareto dominance are applicable to find better optimal fronts of solutions during execution. 

Due to the complexity of the search strategy and the dimensionality of the objective space, 

metaheuristic techniques are not as computationally efficient as their convex counterpart and 
cannot guarantee exactness in the solution. According to the search results, muti-objective 

adaptation of newer metaheuristic techniques such as GWO, WOA or HHO have been 
proposed, like in MOGOA, MOGWO. In both methods, a similar strategy as in MOPSO is 

implemented where non-dominated solutions are compared with the solutions stored in an 

archive and then saved in the archive if the new solution dominates the one in the archive 
(the old solution is omitted) or if neither the new solution nor the solutions in the archive 

dominate each other. If a new solution is dominated by any other in the archive, then it should 

not be stored in the archive. If the archive is full, a grid mechanism is implemented where 
most crowded solutions are replaced for solutions in less crowded locations in the objective 

space to improve diversity in the final approximated Pareto Optimal Front. Best solutions 

(The best search agent (target) for MOGOA and Alpha, Beta and Delta wolfs for MOGWO) 
are selected with the roulette wheel method with higher weights for less crowded solutions in 

the archive [122], [123]. In [104], a Hybrid WOA and GA multi-objective technique is 
presented, in which the genetic information representing a solution is adapted for whales in 

order to exploit the binary encoding in GA for combinatorial problems and the fast 

convergence from WOA. The selection of solutions is performed using the Technique for Order 
Preference by Similarity to Ideal Solution TOPSIS by minimizing Euclidean distance between 

alternative solution and the best solution while maximizing the distance between the 

Euclidean distance between the alternative solutions and the worst solution [104]. 
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(a) Ancillary services 

 

 
(b) Economic objectives 

 

 
(c) Operational Objectives 

Figure 2. Overview of optimization techniques, frameworks, and objectives from search results  

 Source: Created by the author. 
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4. DISCUSSION 

 

From the formulation of optimization problems related to BESS as ancillary services 
provider could be observed a strong branching in the scope of the analysis to be carried out. 

When steady state analysis is preferred, then optimization techniques are applied directly 
over the problem formulation, while, in transient analysis, control strategies are selected, and 

the optimization is carried out for parameter estimation either online or offline.  In this case, 

Model Predictive Control has been found to be the preferred strategy, since it provides the 
flexibility of implementing non-linear models and base the action control on predicted 

behavior of the plant optimizing desired objective functions. This, however, can be a weakness 

as well since the quality of the predictions depend on the quality of the model.  
On the other hand, traditional PID controllers are still being used as control strategy since 

the model for control is still linear. Although new approaches for its implementation and 
parameter estimation have been proposed such as FOPID and ANN based control and 

parameter optimization using MH or ML techniques (Fuzzy logic or ANN) for non-linear 

models. For steady state analysis, when BESS units are considered behind the meter, the 
optimization problem is typically constrained by active power balance equations, while in 

Distribution Networks an AC power flow is used to account power losses. However, the 

concave nature of AC power flow has also suggested in recent studies to think in linearization 
(e.g., First order in Taylor Series Expansion, polygon linearization) to simplify the 

formulation and use convex optimization methods for speeding up the obtention of solution 

while guaranteeing its exactness. Relaxations on the OPF formulation has been frequently 
explored in recent studies, specifically by transforming the non-convex quadratic equality 

constraints present in AC power flow equations (and/or in objectives) into convex second order 
cone inequality constraints and solving the convex program with SOCP. 

During this review, the problem of the optimal allocation (location and sizing) of BESS 

units was recurrent, and its formulation using AC power flow results in a MINLP problem 
(MILP if relaxations/linearization eliminate the non-linearity/non convexity in equations). 

Typically, MILP or MINLP are solved using Branch and Bound Method. (B&B). Such 

problems include convex transformation of constraints with integer variables and can 
formulated as an optimization problem using an algebraic approach with GAMS. Due to the 

flexibility of MH in finding solutions to any kind of problems (convex and non-convex), Multi-
objective MINLP programs have been handled with those techniques, achieving good 

performance while trading exactness off. Techniques in the categories PSO and GA have been 

found to be the most popular in the last years. As can be observed in Table 2, modifications, 
or new proposals on PSO or GA techniques can be found in single occurrences, while their use 

in any other form (original, modified or hybridized) for result comparison are greatly used. 

Other techniques used in the last studies for BESS implementations are Grey Wolf 
Optimization (GWO) and Whale Optimization Algorithm (WOA). 

Ever since it is desired to achieve better solutions while increasing computational 

efficiency, hybridization takes relevance, as it is shown in recent studies, since this allows to 
take the advantageous strategies from several techniques and combine them into a single 

better technique aiming to achieve greater speed of convergence and diversity in solutions in 
MULTI frameworks.  Optimization problems, as could be observed in the corresponding 

section, are commonly formulated in mono-objective framework, even when the aim of the 

problem is to optimize several objectives. This is done so because it simplifies the execution 
of the program and facilitates any possible linearization or relaxation. However, this 

reduction in the dimension of the objective space results in the individualization of the 

solution and the subjectivation of the importance of each objective function. 
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In multi-objective frameworks, the result of the optimization is a set of solutions that 

cannot be improved in one objective without degrading the others (non-dominated solutions). 
This adds complexity to the optimization but delivers flexibility when it is desired to have 

multiple operation setpoints or if there is no objective information regarding objective 

weights. As could be observed, the multi-objective framework (MULTI) is recurrent in recent 
studies, and newly developed metaheuristic techniques are mainly assessed within this 

framework. It is worth noticing that the pareto dominance criteria is still the most common 

technique implemented in MO metaheuristic algorithms to select the best solutions. However, 
the criteria comparing such solutions has also been subject of research, such as TOPSIS, ε-

dominance or RPNS. 
On the other hand, due to the uncertain nature of the primary resources in RES, 

Stochastic optimization (STOC) and Robust optimization (RO) have taken relevance in the 

studies reviewed and are now presented as computational cost-effective alternatives to 
Monte-Carlo simulations. Within STOC and RO optimization frameworks, LP 

implementations are possible by introducing relaxations and if probability distributions are 

represented by convex functions.  
Finally, it is worth noticing how multiple optimization stages are now being implemented 

in BESS research. As observed in Table 2, a Bi-Layer Optimization (BLO) framework has 

been frequently proposed in recent studies, in which one optimization layer typically 
optimizes short term operation problems while the other optimizes, partially based on results 

of the other layer, long term (planning) problems. 
 

 

5. CONCLUSIONS 

 

In this paper, an overview of the role of BESS in the penetration of RES in power systems 

and the different advantages of their implementation found in recent literature are presented 
in the introduction. Then characteristics of BESS chemistries is presented in terms of 

efficiency and energy density. From this overview, LIB technology is detailed due to trending 

research and its increasing participation in the operation of power systems, especially in 
terms of demand patterns for EV and Vehicle to Grid frameworks.  Later, a summary of BESS 

operation and optimization frameworks is presented. Subsequently, a review on the 
formulation of optimization problems related to BESS as ancillary services provider is 

presented and objective functions formulated in recent studies are detailed.  Next, an 

overview of optimization frameworks and techniques is presented considering occurrences in 
literature published in the last three years (since 2019). Finally, it can be concluded that 

research including BESS optimization has been increasing exponentially in the last decade. 

The formulation of optimization problems is not only related to ancillary services, but also to 
support standalone operation or operation support in microgrids and depending on the 

timeframe of analysis, the optimization may take place within optimal power flow or control 

frameworks. Given the formulation of the problem and the scope of research, multiple 
optimization frameworks are being implemented in recent research considering stochasticity, 

computational efficiency, and dimensionality of objective space. MH techniques dominates 
complex, multivariate, multi-objective analysis while relaxations, simplifications, 

linearization, and single objective construction enable the use of traditional, more efficient, 

and exact techniques. Well known metaheuristic techniques, such as PSO or GA, have been 
used often as a reference for comparison in the implementation of new methods aiming to find 

better solutions more efficiently. Hybridization of MH has been studied showing comparable 

or improved results and presenting possible alternatives to other well-known MH techniques. 
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