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Abstract 

This work introduces a Machine Learning (ML) model designed to predict solar radiation 

in diverse cities representing Colombia's climatic variability. It is crucial to assert that the 

amount of solar energy received in a specific region is directly related to solar radiation and 

its availability, which is influenced by each area's particular climatic and geographic 

conditions. Due to the high variability and resulting uncertainty, various approaches have 

been explored, including the use of numerical models to estimate solar radiation. The primary 

objective of this study was to develop and validate an ML model that accurately predicts solar 

radiation in cities. The methodology employed was specific to data treatment and ML model 

development. It was structured into three fundamental stages: clustering, estimation, and 

response, considering that the model is based on historical data. The obtained results were 

assessed using appropriate statistical definitions, not only determining the model's efficiency 

in terms of prediction but also considering interactions between data for the approximation 

and prediction of solar radiation. In this context, it is crucial to emphasize that the research 

contributes to understanding solar radiation in Colombia. This study underscores the 

importance of developing ML models to predict solar radiation, emphasizing the need to 

consider the country's climatic diversity. The results obtained, following the model's 

application, provide valuable information for comprehending and anticipating the 

availability of this primary resource. 
 

Keywords 

Machine learning, renewable energy, predictive model, climate prediction, solar 

radiation. 
 

Resumen 

En este trabajo se presenta un modelo de Aprendizaje Automático (ML por sus siglas en 

inglés) diseñado para predecir la radiación solar en diversas ciudades que representan la 

variabilidad climática de Colombia. Destaca afirmar, que la cantidad de energía solar 

recibida en una región específica está directamente relacionada con la radiación solar y su 

disponibilidad, la cual se ve afectada por las condiciones climáticas y geográficas particulares 

de cada área. Ante la alta variabilidad e incertidumbre resultante, se han explorado diversos 

enfoques, entre ellos, el uso de modelos numéricos para estimar la radiación solar. El objetivo 

principal de este estudio fue desarrollar y validar un modelo ML que permita predecir con 

precisión la radiación solar en las ciudades. La metodología empleada fue propia del 

tratamiento de datos y desarrollo de modelos ML. Se estructuró en tres etapas 

fundamentales: agrupamiento, estimación y respuesta, al tener en cuenta que el modelo está 

estructurado con base en datos históricos. Los resultados obtenidos fueron evaluados 

mediante definiciones estadísticas apropiadas, que no solo determinaron la eficiencia del 

modelo en términos de predicción, sino que también consideraron las interacciones entre 

datos para la aproximación y predicción de la radiación solar. En este sentido, es crucial 

señalar que la investigación contribuye al entendimiento de la radiación solar en el contexto 

colombiano. Este estudio subraya la importancia de desarrollar modelos ML para predecir la 

radiación solar, destacando la necesidad de considerar la diversidad climática del país. Los 

resultados obtenidos, tras la aplicación del modelo, proporcionan información valiosa para 

comprender y anticipar la disponibilidad de este recurso primario. 
 

Palabras clave 

Aprendizaje automático, energía renovable, modelo predictivo, predicción climática, 

radiación solar. 
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1. INTRODUCTION 

 
Addressing the uncertainties associated with solar radiation becomes imperative with the 

increasing demand for sustainable and renewable energy sources. These uncertainties arise due 

to weather patterns, seasonal changes, and geographical diversity variations. Consequently, 

accurately predicting solar radiation becomes crucial for efficiently planning and optimizing 

electricity generation systems. Researchers have turned to advanced computational models and 

Machine-Learning techniques to tackle this issue. These models leverage historical and real-time 

data to develop predictive algorithms capable of estimating solar radiation levels with high 

accuracy. By considering factors such as geographical location, weather patterns, and historical 

solar radiation data, these models help optimize the planning and operation of solar power 

systems, thereby maximizing their efficiency and output. Thus, less uncertainty of the power 

produced by variable renewable sources can lead to optimal planning that directly impacts the 

end user [1].  

In Colombia, the utilization of non-conventional renewable energy sources utilizing variable 

primary resources is still in its early development. While the majority of energy generation in the 

Colombian energy matrix comes from renewable sources, with hydroelectric generation 

contributing 70 % to the National Electric Interconnected System, the hydroelectric sector in 

Colombia exhibits vulnerabilities. The nation is confronted with the risk of electricity rationing 

due to factors like climate change and El Niño, as observed in past years, including 1992, 1995, 

2005, and 2015 [2]. 

This situation highlights the need to diversify the energy matrix and strengthen the 

integration of other renewable energy sources, especially those that do not depend directly on 

climatic conditions. The lack of rain affects the availability of water resources for hydroelectric 

generation, emphasizing the importance of exploring and developing technologies that use more 

stable renewable energy sources, such as solar, wind, or biomass energy [3]. As shown by [4], [5], 

digitization can help integrate variable renewables by allowing networks to better adapt 

energy demand to times when the sun is shining, and the wind is blowing. Certainty of 

primary resource data immediately ensures that energy is consumed when and where it is 

needed, improving energy services' responsiveness [6]. 

Numerical models are employed in the first stages of predicting and estimating solar 

radiation. These models, characterized by a deterministic framework, establish relationships 

through coefficients linking extraterrestrial radiation to ground-level measurements [7]–

[11]. The weaknesses of this type of model are that they do not capture the non-linearity of 

the resource and its relationship with other climate data, in addition to being highly 

geolocated, which translates into a model over-adjusted to a region. The second type of model 

is analytical-statistical. Statistical approximations are considered analytical since they treat 

radiation as a signal that can be decomposed and studied, which will be an input to generate 

a model like the historical one [12].  

As an example, in [2], [13], predictive models can be bifurcated into two distinct groups. 

The initial group encompasses the utilization of components from classical statistics, while 

the second group involves the application of stochastic methodologies, specifically Artificial 

Intelligence (AI) and Machine Learning (ML). Stochastic models, particularly ML, are 

intricately defined within the realm of computer science and are formally classified as a 

subset of AI methodologies. 

For Machine Learning (ML) applications in primary solar resource prediction, the number 

of stages changes. Due to climate variability and the dependence on climate data radiation, 

a classification stage is presented before clustering [14]–[16]. The objective of this stage is to classify 

the study data in different types of climates according to the condition. The choice of the 

technique or techniques for these stages first involves establishing criteria that allow 



E. D. Obando Paredes  TecnoLógicas, Vol. 26, nro. 58, e2789, 2023 

Página 4 | 18 

evaluating strengths and weaknesses in data processing to find the ones that best suit the 

database to be used, the climate region under study, management of the non-linearity of the 

resource, and future horizon. 

The article's structure is as follows: Section 2 shows the materials and methods used in 

the model's design, section 3 explains the ML model, section 4 shows the results and 

discussion of the model in its application to Colombian data, and Section 5 presents the 

conclusions. 

 

 

2. MATERIALS AND METHODS 

 
2.1 Criteria for the design of the model 

 

In [2] show the prediction of the primary resource using Machine Learning, a three-stage 

process is employed. The initial stage involves the preprocessing and classification of data, 

followed by the input stage, and the final stage is dedicated to handling the discrepancy 

between estimated and measured data. 

 

Furthermore, when utilizing a Machine Learning model, the following aspects are taken 

into consideration: 

 

• Addressing non-linearities. 

• Evaluating behavior with multiple inputs. 

• Considering the forecast horizon. 

• Analyzing the response of the model. 

• Assessing its flexibility. 

 

Table 1 displays the most used simple predictors for predicting the primary solar resource. 

These predictors are compared based on their performance in handling highly nonlinear data, 

utilization of multiple inputs, lower uncertainty in outcomes, flexibility in input changes, and 

deviation exhibited compared to their counterparts. Additionally, the prediction horizon, 

defined as the future time for which the prediction will be made, is taken into consideration 

[17]–[20] This represents the new challenge in the stage where data processing is combined 

with AI and ML as an established element to make reliable real-time decisions that 

contribute to the unification of concepts. By integrating these advanced methods and 

techniques, higher accuracy and understanding in solar resource prediction are achieved, 

enabling more informed and efficient decision-making in renewable energy planning and 

management [21]. 

If the aim is to maximize the strengths of the techniques at different stages of the model, 

a hybrid-type topology is proposed to achieve higher efficiency and accuracy in solar resource 

prediction. This topology, depicted in Figure 1, is based on the combination of two or more 

simple predictors. By integrating multiple predictors, a more comprehensive and precise 

understanding of the variables involved in the prediction can be obtained, overcoming 

individual limitations of each predictor, and enhancing the quality of predictions. 
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Table 1. Classification of unit predictors by established criteria. Source: Own elaboration. 

 

Technique 
Treatment of 

non-linearity 

Behavior when using 

multiple inputs 
Error 

Flexibility of the 

model 

Forecast 

Horizon 

BG                                         Variable 

SVM,                                         Variable 

Fuzzy                                         Daily 

k-NN                                         Daily 

Integrated 

Self-

Regressive 

Mobile 

Media 

Model 

(ARIMA)                                         

Variable 

Decision 

trees                                         
Time 

K-means                                         Time 

 
.

 
Figure 1. Hybrid predictor topology with target variables. Source: Own elaboration. 

 

The hybrid topology leverages the strengths of each predictor, whether it be in handling 

nonlinear data, utilizing multiple inputs, reducing uncertainty in outcomes, or providing 

flexibility in input changes. By combining these strengths, a more robust and reliable 

approach for solar resource prediction is achieved. Furthermore, the hybrid topology 

considers the importance of the prediction horizon, which refers to the future time period for 

which the prediction will be made. This allows the model to be adapted to different needs and 

scenarios, offering the ability to make short, medium, and long-term predictions [22]–[25]. 
Within a hybrid topology, input data is viewed as signals and undergoes a series of three 

procedures: (1) pre-processing, which entails identifying data types and categories, and 

employing regular techniques to substitute missing data; (2) grouping, where climate profiles 

and classification trends are outlined within the climate data, whether on a daily or monthly 

scale; (3) estimation, involving the establishment of relationships between input and output 

to identify the most suitable connection defining a primary resource profile. 

 
2.2 Database input in the development of the model 

 

The above considerations are considered because each geographic location has a unique 

solar resource profile that varies continuously depending on the time, day, season, and year. 
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In addition, radiation depends on other climatic parameters, which make it highly variable 

and with a high non-linearity profile [21]. As explained in the introduction, Colombia is in 

the process of entering photovoltaic solar systems into its energy matrix. However, the 

electrical power of these systems and their accuracy depends on a variable primary resource 

in a country with 5 thermal floors and temperatures from zero degrees to 40 ºC and the 

geolocation of the installation of Photovoltaic Solar Generation Units [6], [26]. 

In these Units, the variability of primary resources represents the greatest uncertainty 

in the assessment of future performance in a photovoltaic power plant. To try to minimize 

these effects, three aspects that relate solar resource data should be considered in the 

modeling and planning process of a solar project [27]:  

 

1) Primary resource data with a 10-year history for site selection during feasibility 

studies. 

2) Quantification of the power generated by the plant, value used in the design and 

subsequently in economic studies of the plant. 

3) Real-time measurement and prediction of the operation of the isolated photovoltaic 

system and the grid. 

 

A summary of the requirements that the database must meet according to the application 

scenario is shown in Table 2. 

 
Table 2. Data set requirements to be used depending on the application. Source: Own elaboration. 

Requirement / Application Academic Political 
Potential 

information 
Business 

The data set must be 

validated by geographic 

measurements on site and 

have public information and 

documentation 

X X X X 

The dataset is validated 

independently, or its 

validation is based on an 

available protocol. 

N/A X X X 

Resolution of 10x10km or 

better 
N/A X X X 

History of 10 years or more N/A N/A X X 

NA: not applicable. 

 

The chosen database is the PowerViewer database provided by the National Aeronautics 

and Space Administration (NASA). While its spatial resolution falls short of 10 x 10 km, the 

data undergo a validation process through soil measurements, and there is extensive 

documentation available detailing its development. 

 

 

3. DEVELOPMENT OF THE MODEL 

 
3.1 General in the development of the model 

 

The proposed model is shown in Figure 2. Consists of three stages. In the first stage, a 

fuzzy algorithm is employed to group and classify the input variables based on the high 
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variability of climate data in the Colombian climate. This algorithm allows for more precise 

classification by defining linguistic variables and conditional "if-then" rules. These linguistic 

variables, such as cloudy, rainy, and sunny, capture the different weather conditions. The 

conditional rules are used to establish relationships between the climate data and the clarity 

index, which serves as a precursor to incident solar radiation. 

 

 
Figure 2. ML model for primary resource prediction. Source: Own elaboration. 

 

Preprocessing and grouping: Fuzzy Logic is opted for this phase due to its adeptness in 

uncovering patterns within data, handling multiple inputs efficiently, and classifying climate 

information and ground data across diverse weather conditions—sunny, cloudy, and rainy, 

along with their various combinations [30], [31]. These distinctive features position Fuzzy 

Logic as an ideal technique for categorizing the specific climatic variations observed in 

Colombia. 

Estimation: For this stage, the predictive models considered are NN (Neural Network) 

and SVM (Support Vector Machine), employed in tandem. Both models exhibit the capability 

to capture the inherent high linearity of radiation while maintaining a low prognostic error. 

The flexibility inherent in the combined approach allows for the integration of geographical 

considerations, including latitude and longitude, into the model. In the case of NN, its ability 

to handle more than three variables in the input is essential; it identifies relationships 

between climate data and geographical location, subsequently injecting that profile into 

SVM, which serves as the primary resource predictor. The necessary membership functions 

are generated where the values will be classified as they enter the model, and the rules will 

be changed according to the new data entries. Figure 3 illustrates the Fuzzy classifier 

components used in the model [28]. 
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Figure 3. Components of the Fuzzy Logic classifier. Source: Own elaboration. 

 

The fuzzy approach is particularly suitable for the Colombian climate, which exhibits 

significant climate variations across different regions of the country. By incorporating fuzzy 

logic, the model can effectively handle the inherent uncertainty and imprecision in climate 

data, thus improving the accuracy of solar resource predictions. The utilization of the clarity 

index as a key predictor in the model is essential as it provides an indirect measure of incident 

solar radiation. The conditional rules enable the capture of complex relationships between 

the climate data and the clarity index, adapting to the specific climate patterns of Colombia. 

The performance of this technique relies on an important parameter known as the kernel 

function, which serves as the core component of the SVM model. The kernel is a characteristic 

feature of SVMs that enables the mapping of variables from a lower-dimensional space to a 

higher-dimensional one. In the ongoing model development, the chosen kernel is the NN with 

a geographic component. 

According to the theory, if a projection is used 𝛷: 𝑋 →  𝐻. Where 𝑋 is the input data vector 

and 𝐻 the Hyperplane of Separation. The Internal Product of points ⟨𝛷(𝑥)|𝛷(𝑥′)⟩ It can be 

represented by a kernel function 𝑘, as shown in (1). 

 

𝑘(𝑥, 𝑥′)  =  ⟨𝛷(𝑥)|𝛷(𝑥′)⟩ (1) 

 

This nonlinear kernel plays a crucial role in expanding the input dimensions of the 

predictor through matrix-based vector data, facilitating effective separation and accurate 

prediction of the primary resource. The objective of the NN is to incorporate additional 

geographic features, such as latitude and longitude, which exhibit significant correlations 

with the measured climatic data. Figure depicts this critical stage of the model where the 

SVM is effectively utilized. Figure 4 depicts the components of the primary predictor and the 

data inputs. 
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Figure 4. Hybrid main predictor components. Source: Own elaboration. 

 

As shown in Figure 4, once the function type of the NN core has been established, it is 

possible to work in spaces of any dimension without redoing the characterization process. 

This is based on the ability of NNs to capture multiple inputs that could be applied directly 

to other data without the need for a feature extraction process. A powerful combination of 

techniques is employed for the prediction stage: Neural Networks (NN) and Support Vector 

Machines (SVM). Initially, SVM was used primarily as a classifier, but its current trend is to 

utilize it as a predictor due to its generalization capabilities. In this research work, the focus 

has been on developing this technique, leveraging its strong adaptability to the data. 

Furthermore, it is worth noting that its widespread usage as a predictor for primary 

resources has been extensively documented in the literature [29]–[31]. 

 

 

4. RESULTS AND DISCUSSION 

 
4.1 Behavior of the model 

 

Thanks to its privileged geographical position, Colombia stands out for its incredible 

climatic diversity and thermal floors, ranging from coastal areas to snow-capped peaks. This 

climatic variability poses a challenge for accurate solar resource prediction, as it requires a 

model capable of capturing the non-linearities and peculiarities of each region. 

In this research work, selected five cities representing different climatic regions in 

Colombia will serve as scenarios to simulate and exemplify the performance of the proposed 

model. The PowerData climate database will be used with databases from six cities in 

mountainous regions, lush jungles, vast plains, and the stunning Pacific and Atlantic coasts. 

This combination of geographically diverse data sources ensures a robust representation of 

the country's climatic variability. 

Table 3 complements this research by providing detailed geographical information about 

each of the selected regions. This information includes locations, altitudes, geographical 

features, and other relevant data essential for understanding each city's climatic context and 

its impact on solar resource prediction. 
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Table 3. Geographical information of the study regions. Source: Own elaboration. 

Region Latitude Longitude 
Altitude 

(MASL) 

Mt. 5.0621 -75.505 2600 

Jungle -4.2089 -69.943 1100 

Plain 4.2521 -71.649 1200 

Pacific Coast 1.8031 -78.775 300 

Atlantic Coast 11.031 -74.8119 600 

 

When changing the geographical location, weather data and daily profiles are altered. 

The model needs to capture this geographic-climatic variability and provide accurate 

predictions of the primary resource. In the mentioned regions, we have 3965 observations 

representing the daily average of climate data collected over a period of more than ten years, 

from 01/01/2009 to 31/07/2022. Approximately 70 % of these data (2700) are used for training 

the model, while the remaining 30 % (1265) is reserved for testing in all cities. Figure 5 shows 

that 40 % of the training data is allocated to train the fuzzy algorithm, and 60 % is allocated 

to the neural network (NN). On the x-axis, the time interval for each variable measurement 

is displayed, and on the y-axis, the normalized magnitude of each variable is shown. This 

combination of approaches allows us to leverage the strengths of both methods and better 

understand the variability of the solar resources in each region. The jungle region exhibits a 

lower average primary resource value than other cities. This is due to an extended rainy 

season lasting 5 to 6 months per year. Additionally, despite being coastal regions of the 

Pacific and Atlantic, there are significant differences due to the influence of the Humboldt 

current and the cold currents that traverse the Pacific coast [32]. 

 

 
Figure 5. Daily radiation and climate data correlation graphs from 01/01/2008 to 07/31/2022. 

Source: Own elaboration. 

 

The climatic profiles of the jungle, plains, and the Atlantic coast reveal similarities in 

evaluating the correlation between humidity and incident radiation, which is notable in these 

regions. Specifically, a similar profile is observed for the humidity variable across all three 
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types of geography. However, due to the variability of the profile in each city, it is not possible 

to draw definitive conclusions about the behavior of the other variables. This aspect is 

addressed by using fuzzy rules, which allow us to infer the type of day based on climatic data, 

rather than relying solely on the correlation coefficient associated with the city under study. 

It is worth noting that Figure 5 shows the presence of climatic variables with a positive 

correlation, such as the Clarity Index and the temperature at two meters, in all cities. A more 

pronounced correlation is observed for the Clarity Index compared to temperature. 

In the mountain climate and on the Pacific coast, unlike other regions, there is an inverse 

relationship between wind speed and radiation. In the first city, this is due to the movement 

of cloud masses formed in the mountain range, which are carried by the wind and affect the 

incident radiation in the city. In the second city, this inverse relationship is due to the flow 

of sea currents coming from the south of the continent, leading to a higher air mass coefficient 

(AM) that disperses radiation across different wavelengths. For other variables, the 

coefficient varies, preventing adequate generalizations for the model and inferring the type 

of day. 

 
4.2 Model simulation scenarios 

 

A solar radiation prediction model based on ML is designed. It has the following 

attributes: 

• Hybrid predictive topology. 

• Implementation of classification-grouping (fuzzy logic) and estimation stages (SVM 

+ NN). 

• The approximate logic is robust because it is not exclusive and can intersect the 

membership functions in the classification.  

• SVM has strengths in terms of input data handling, high non-linearity, and the 

possibility of geolocation of the estimate when handling the geographical component 

(NN core). 

• Inclusion of a dynamic kernel (NN) function that contributes to the prediction of 

primary resources depending on the geographical location. 

 

The ML hybrid prediction model is successfully implemented in the mentioned 5 cities. 

This revolutionary model intelligently combines the power of the fuzzy classifier, neural 

network, and support vector machine. To ensure accuracy and avoid excessive adjustments, 

extensive work has been done on the dataset, preventing the generation of unwanted trends. 

In this crucial stage, incident radiation on a horizontal surface is excluded, and the focus is 

on classifying the day based on the clarity index. To achieve this, the acclaimed Ishibashi 

method (FRBCS. W) is implemented in the fuzzy stage of the model. This approach, based on 

spatial divisions, allows for exceptional results and a deep understanding of climatic 

patterns. 

The dataset is carefully divided into training and testing stages, utilizing 85 % of the data 

for training and the remaining 15 % for testing. During the process, equal fuzzy regions are 

created for the input variables (training) and output (clarity index), enabling precise and 

reliable formation of the distinct regions of rain, cloudy, and sunny. 

Furthermore, the nonlinear core of the model plays a crucial role in generating 

meaningful variables. This core is achieved by including a hyperplane that separates the 

input values and harnessing the power of the inner product between the support vectors. 

This advanced approach ensures higher prediction accuracy and a deeper understanding of 

the factors influencing the clarity index. 
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Table 4 shows the parameters of the SVM regression model. The error penalty tolerance 

value 𝜀 is displayed, which depends on the core function to pass or not a value with an error 

level. This value changes in all cities, but in the Pacific region it reaches its highest value 

because the model fails to fully capture the climate profile of the city. Therefore, a profile 

with higher error should be allowed. The support vector machine relates the day types to the 

other climate data. When considering a nonlinear hyperplane of data separation, it is possible 

that the model captures the geographical variations of the Colombian climate and gives a 

predictive response one day to the future as a prediction horizon. 

 
Table 4. Results of the SVM model in the cities evaluated. Source: Own elaboration. 

Regions 

Parameter 

𝜀 
Support 

Vectors 
Value Goal Role Training Software 

Mountain 0.3 1770 -367.481 0.1133 

Plain 0.2 1439 -463.437 3014 

Jungle 0.17 1646 -233.756 0.0472 

Pacific Coast 0.5 1553 -1005.469 10.61 

Atlantic Coast 0.21 2215 -743.441 0.2165 

 

The values of the objective function are highly variable due to the divergences between 

the vectors that support the hyperplane in each city, determined by the geographical nucleus. 

It is particularly noteworthy that the Pacific coast region has the lowest value of this 

function, which is associated with a significant error in the predictions. This suggests that 

the model fails to capture the complex climate variations in this region adequately. It is 

important to note that while two model runs do not yield the same results, a consistent trend 

of values by region is observed. This variability is attributed to the nonlinear stage of the 

neural network and the calculation of the inner product in the SVM predictor, which 

introduce some uncertainty in the results. 

The divergence in the values of the objective function between regions can be attributed 

to multiple factors, such as the specific geographic and climatic variability of each area. 

Atmospheric conditions, topography, and other geographical elements influence the 

measurements and the relationship between climatic variables. Therefore, it is essential to 

consider these differences when interpreting the results and applying the model in different 

geographic regions. 

 
4.3 Discussion 

 

The results presented in the previous section have two important interpretations. From 

a statistical perspective and data usage, the model is observed to be robust and exhibits good 

performance. There is no evidence of systematic errors in the data, and the selected predictors 

fulfill their objective. It is worth noting that the weaknesses of the model are attributed more 

to geographical factors than to issues with data processing or model stages. The use of diverse 

climatic data from heterogeneous regions is beneficial as it avoids biased approaches based 

on a single dataset. Furthermore, the hybridization of predictors, particularly the 

combination of neural networks (NN) and support vector machines (SVM), allows for 

handling larger datasets, achieving computational efficiency, and addressing the high non-

linearity of the resource. 

From the perspective of distributed generation planning, the model's results are 

promising. The model provides a satisfactory response by requiring low uncertainty in 
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predicting and quantifying the primary resource for the installation of solar energy solutions. 

This enables the reliable projection of the amount of energy that can be installed in a 

distributed manner. These findings are encouraging for those involved in renewable energy 

generation planning, as having a reliable and accurate model is crucial for informed decision-

making and maximizing the utilization of available solar resources. 

The following section shows the validation of the model. This process is developed 

considering statistical metrics that evaluate the degree of cohesion between the data 

predicted by the model and the measured data. 

 

 

5. MODEL VALIDATION 

 

For this research, the following statistical type metrics are used in the validation of the 

model: 

 

•  Pearson's coefficient (r) 

• The mean square error (MSE)  

• Bias measures how much the mean values differ from the simulated and measured 

data. 

• The variance measures the degree of agreement between the model estimate and the 

degree of variability in the measured value. The covariance measures the non-

systematic error, that is, the error that remains after evaluating the deviations of the 

mean and the variance.  

• The root of the mean square error (RMSE) is more sensitive to abrupt variations in 

prediction results and is therefore suitable for applications where lower value errors 

are more tolerable and larger errors cause disproportionately high costs.  

 

To validate the proposed model, the statistical metrics outlined previously, along with 

graphical tools, are utilized. As indicated by [33], these tools are considered valid for 

showcasing the model results. The graphical tool's strengths lie in illustrating the correlation 

between the measured and predicted data, uncovering biases and systematic deviations 

based on radiation conditions, and depicting the range of deviations associated with the 

predictors. The fact that being a hybrid model validates the total response of the model and 

not by individual stages [34] is highlighted. 

Figure 6 demonstrates the model's impressive performance in capturing the non-linearity 

of the primary resource, effectively managing input variables, and exhibiting flexibility when 

evaluated across diverse geographic locations. The fuzzy stage operates successfully in all 

regions, effectively classifying and providing daily profiles to the model, which are then 

translated into radiation values based on the specific day. In mountainous and plain regions, 

the radiation values tend to represent rainy and sunny days, resulting in the intermediate 

radiation values, which directly correlate with average radiation profiles, not being fully 

represented. Conversely, the Atlantic coast exhibits high radiation values, allowing the 

model to accurately respond to the characteristic trend of both cloudy and sunny days in this 

region. 

  



E. D. Obando Paredes  TecnoLógicas, Vol. 26, nro. 58, e2789, 2023 

Página 14 | 18 

 
Figure 6. Dispersion diagram of the model in the evaluated regions. Source: Own elaboration. 

 

Table 5 shows statistical validation metrics for the cities evaluated. The behavior of the 

model in cities is shown considering the statistical metrics described above: Pearson 

coefficient, bias, variance, covariance, MSE and RMSE. 

 
Table 5. Values of model metrics evaluated in cities. Source: Own elaboration. 

Natural 

region 
𝑟 𝑈𝑀 𝑈𝑆 𝑈𝐶 

∑ 𝑈𝑀 + 𝑈𝑆

+ 𝑈𝐶 
𝑅𝑀𝑆𝐸 𝑀𝑆𝐸 

Mountain 0.937 0.00781082 0.00677162 0.986269 1.00085235 0.0480485 0.0023086 

Jungle 0.958 0.00708421 0.00214435 0.991624 1.00085297 0.0446628 0.0019947 

Plain 0.963 0.03978723 0.00260174 0.958436 1.00082497 0.0987763 0.0097567 

Pacific 

Coast 
0.481 0.02433792 0.68385410 0.292646 1.00083812 0.7167485 0.5137284 

Atlantic 

Coast 
0.913 0.07505674 0.01250164 0.913236 1.00079450 0.0686814 0.0047171 
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Analyzing the correlation, the model stands out for its robustness in predicting resources 

in the evaluated cities, as it shows a high correlation in most of them, approaching unity. 

However, lower performance is observed in the Pacific coast, as indicated by the metrics. This 

is due to the model's inability to capture the pronounced variability of the resource in this 

region, which is related to the warm air currents coming from the south. Consequently, a 

lower correlation is obtained compared to the other cities. Regarding bias, it is evident that 

the value is small in all cities. This indicates the absence of systematic errors between the 

model and the test data, which is positive. Furthermore, it demonstrates that the prediction 

parameter is correctly reflected in the model, without internal issues in terms of weight 

calculation and trends in the different stages of the model. 

The model exhibits a strong correlation in most of the evaluated cities, demonstrating a 

good capacity for resource prediction. Although lower performance is observed in the Pacific 

coast due to resource variability, the overall bias is low in all cities, supporting the validity 

and accuracy of the model. 

 

 

6. CONCLUSIONS 

 

In summary, the model developed in this work provides a valuable tool for quantifying 

and predicting the primary solar resource in Colombia, considering the country's 

geographical conditions. This contributes to the development and visibility of computer 

techniques used to support decision-making processes in the growth of Distributed 

Generation with photovoltaic sources. 

The data sets used in this model have various applications, ranging from opening the 

debate on strategic-level policies to conducting market assessments. In particular, the terms 

"Potential" and "Business Information" are key areas where accurate indicators are needed 

to support decision-making. The importance of these data lies in the fact that the former 

activity does not consider financial commitments, while the latter considers the costs and 

economic and electrical effects in project development on the power grid. 

Short-term machine learning techniques, such as those used in this model, are highly 

useful for predicting demand in very short time intervals. This enables informed decisions 

regarding the feasibility of photovoltaic solar generation in isolated areas or the 

implementation of hybrid energy systems. Additionally, machine learning can serve as an 

effective tool for developing demand trends by regions, facilitating geographically distributed 

planning of photovoltaic systems and diversifying Colombia's energy matrix. 

This model offers a solid and promising perspective for managing solar resources in 

Colombia, providing support for strategic decision-making, and opening new opportunities in 

the renewable energy sector. The use of machine learning techniques and data analysis 

provides a strong foundation for the planning and effective implementation of solar energy 

solutions in the country. 
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