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Abstract 

The k-sample problem for functional data has been widely studied from theoretical and 

applied perspectives. In literature, Gaussianity of the generating process is generally 

assumed, which may be impractical in some situations. This work proposes an extension of 

the Kruskal-Wallis test to the case of functional data as an alternative to the problem of non-

Gaussianity. The methodology used consisted of transforming each group's functional data 

into scalars using random projections and subsequently performing classical Kruskal-Wallis 

tests. The main results were the extension of the Kruskal-Wallis test to the case of functional 

data and the verification of its unbiased and consistency properties. Reducing dimensionality 

from random projections allows us to extend the classical Kruskal-Wallis test to the functional 

context and solve problems of non-Gaussianity and atypical observations. 

 

Keywords 
Functional data, random projections, Kruskal-Wallis test, non-parametric statistics, 

brownian motion. 

 

Resumen 

El problema de k muestras de datos funcionales se ha estudiado ampliamente desde 

perspectivas teóricas y aplicadas. En la literatura se asume generalmente el supuesto de 

Gaussianidad del proceso generador, el cual puede ser impráctico en algunas situaciones 

particulares. Este trabajo tuvo como objetivo proponer una extensión de la prueba de Kruskal-

Wallis al caso de datos funcionales, como alternativa al problema de no Gaussianidad. La 

metodología empleada consistió en transformar los datos funcionales de cada grupo en 

escalares empleando proyecciones aleatorias y en realizar posteriormente pruebas de 

Kruskal-Wallis clásicas. Los principales resultados fueron la extensión de la prueba de 

Kruskal-Wallis al caso de datos funcionales y la comprobación de las propiedades de 

insesgadez y consistencia de esta misma. Se puede concluir que la reducción de la 

dimensionalidad a partir de las proyecciones aleatorias permite extender la prueba de 

Kruskal-Wallis clásica al contexto funcional y por ende solucionar problemas de no 

Gaussianidad y observaciones atípicas. 

 

Palabras clave 
Datos funcionales, proyecciones aleatorias, prueba de Kruskal-Wallis, estadística no 

paramétrica, movimiento browniano. 
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1. INTRODUCTION 

 

Advances in computational and analytical techniques allow for continuous monitoring of 

many processes. New statistical methods are needed to analyze large data sets arising from 

these processes. Functional data analysis (FDA) has emerged in recent decades as an 

alternative to statistical modeling of large data volumes. FDA is a framework for analyzing 

data consisting of random functions (usually curves) rather than observations of a few 

variables or random vectors [1]. New challenges have arisen in extracting meaningful 

information hidden in functional data [2]. As in classical statistics, in FDA data 

preprocessing, modeling, hypothesis testing, parameter estimation, and predictive analysis 

using parametric or nonparametric models are fields of interest. Many theoretical and applied 

contributions have been proposed in these areas [2], [3]. In the last decade, the FDA has 

already found applications in several areas of research, including ecology [4], 

epidemiology [5], remote sensing [4], outlier detection in environmental applications [6], and 

traffic volume forecasting [7]. 

To construct a functional observation 𝑋𝑖𝑗(𝑡) from the discretely observed data one can 

employ a standard smoothing technique such as cubic B-splines [8]. The FDA package [9] 

implements the smoothing techniques in R [10]. 

This work focuses mainly on proposing a methodology for comparing groups when the 

same functional variable has been observed in several individuals in each of these. 

Specifically, a traditional nonparametric tool to solve the k-sample problem for a functional 

response is adapted to the FDA scenario. Let 𝑋𝑖1(𝑡), 𝑋𝑖2(𝑡), ⋯ , 𝑋𝑖𝑛(𝑡),   𝑖 = 1,2, ⋯ , 𝑘 random set 

of functions defined over an interval 𝑇 =  [𝑎, 𝑏] which come from Gaussian processes 

𝐺𝑃(𝜇𝑘(𝑡), 𝛾𝑘(𝑠, 𝑡)) [8]. The hypothesis of interest is given in (1). 

 

𝐻0: 𝜇1(𝑡) = 𝜇2(𝑡) = ⋯ = 𝜇𝑘(𝑡),   𝑡 ∈   𝑇 (1) 

 

Against the alternative that at least two functional means are different. The statistical 

literature has a widely considered hypothesis established in (1). The proposed approaches are 

proposed for point-wise t-tests, functional ANOVA, functional principal components analysis, 

and permutation tests. 

Some authors have extensively studied the functional ANOVA problem. For example, [9] 

introduced an asymptotic version of the ANOVA F-test, and [2] considered asymptotic or 

bootstrapped versions of a ℒ2-norm based test, F-type statistic-based test, and globalizing 

pointwise F-test. Furthermore, [1] introduced a method based on a representation of a basis 

function, and [10] described a bootstrap procedure based on pointwise F-tests. However, 

Bayesian functional ANOVA has received less attention. But, [11] introduced a Gaussian 

process ANOVA modeling approach under a Bayesian framework. 

Other approaches were considered by [12], [9], and [13]. Furthermore, [14] proposed a new 

method using a graphical interface based on the global rank test, and this procedure for 

functional ANOVA was applied using permutations. Other authors have proposed other 

approaches, such as that used the Westfall-Young randomization to correct for multiple tests. 

However, this method cannot obtain an overall p-value. Meanwhile, [15] divided the domain 

of interest into regions. However, a disadvantage is that the partition must be respected. 

Furthermore, [16] developed a multi-way functional ANOVA to determine rejection regions. 

Our interest is to provide an alternative to the case where the Gaussian assumption is 

unrealistic, and [17] presented a unified methodology for performing computation-free 
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permutation tests for the testing of the k sample in commutative and noncommutative 𝐿𝑞 

spaces, which includes multivariate and functional data. 

This work is organized as follows. Sections 2.1 and 2.2 review the Kruskal-Wallis test and 

random projections. Section 3 presents an extension of the Kruskal-Wallis test for functional 

data and shows its respective pseudocode. In Section 4.1, we present the simulation study 

and in Section 4.2, we present the application with real data. Finally, we present the 

discussion and some conclusions. 

 

 

2. BACKGROUND 

 
2.1 Kruskal-Wallis test 

 

This section briefly reviews the main statistical technique used in the analysis. Kruskal-

Wallis [18] is a non-parametric statistical test that compares the median values of two or 

more independent samples. The null hypothesis for the Kruskal-Wallis test is that all the 

samples come from the same population, and the alternative hypothesis is that at least one 

group's sample comes from a population with a different median than the others. The test is 

based on the ranks of the observations within each group. It is an alternative to ANOVA when 

the normality assumption is unrealistic. The hypothesis of interest is shown in (2). 

 

𝐻0: 𝜏1 = 𝜏2 = ⋯ = 𝜏𝑘    𝑣𝑠   𝐻1: 𝜏1, ⋯ , 𝜏𝑘 ,     not all equal (2) 

 

Which establishes that there are no significant differences in the effects of the treatments. 

The null hypothesis states that the following distributions 𝐹1= 𝐹2 = ⋯ = 𝐹𝑘 are equal. To 

calculate the Kruskal-Wallis statistic, all N observations from the k-samples are combined 

and ordered from smallest to largest. Let 𝑟𝑖𝑗 be the rank of 𝑥𝑖𝑗 in this joint classification, and 

𝑅𝑗 defined as (3). 

 

𝑅𝑗 = ∑ 𝑟𝑖𝑗,    
𝑛𝑗

𝑖=1
𝑅∙𝑗 =

𝑅𝑗

𝑛𝑗
,   𝑗 = 1,2, ⋯ , 𝑘 (3) 

 

Thus, for example, 𝑅1 is the sum of the ranks received by the observations of 

group 1 and 𝑅∙1 is the average rank for these same observations. Kruskal-Wallis H statistics 

are given by [18] as shown in (4) 

 

𝐻 =
12

𝑁(𝑁 + 1)
∑ 𝑛𝑗 [𝑅∙𝑗 +

𝑁 + 1

2
]

2𝑘

𝑗=1
 (4) 

 

At a significance level of 𝛼, 𝐻0 is rejected if 𝐻 ≥ ℎ𝛼 otherwise, do not reject. The values of 

hα are given in Table A.12 of [18]. When 𝐻0 is true, the statistic H has, as 𝑚𝑖𝑛(𝑛1, ⋯ . 𝑛𝑘) tends 

to infinity, an asymptotic chi-square 𝜒2 distribution with 𝑘 −  1 degrees of freedom. Under 

this assumption, the reject rule is. 

 

Reject  𝐻 ≥ 𝜒𝑘−1,𝛼
2  ; otherwise, do not reject. 
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When the null hypothesis is rejected and it is concluded that at least one sample comes 

from a population with a different median, some post-hoc tests (e.g., Dunn's test) can be used 

to identify which samples differ significantly. 

 
2.2 Random Projections 

 

The hypothesis of interest (see hypothesis in (1)) can be tested using the projections of the 

functions. These involve mapping high-dimensional data points into a lower-dimensional 

space using a randomly generated projection matrix [19]. The basic idea is to use a randomly 

generated projection matrix to map each high-dimensional data point onto a lower-

dimensional space. By doing this, we can reduce the number of dimensions of the data while 

still retaining important information about the data structure. 

Random projections are often used in situations where the dimensionality of the data 

makes it difficult to work with or analyze. In other words, random projections can be a handy 

tool for reducing the complexity of the data without losing important information. Given a set 

of data or a distribution in spaces of dimension greater than one, random projections consist 

of projecting the data or calculating the marginal of the distribution in a lower-dimensional 

subspace that has been chosen randomly [20]. Random projections preserve certain properties 

that are very important in the FDA. One of them is that it preserves distances with a high 

degree of probability if a projected subspace is the uniform distribution. This result is 

extended to the standard Gaussian distribution [10]. In this sense, [21] showed that if two 

distributions are defined in a separable Hilbert space and have finite moments of some order, 

then projecting the distributions onto a random one-dimensional subspace is sufficient to 

distinguish them with high probability, as long as the moments of one of the distributions 

match those of the random projection. In other words, if we have two distributions with 

similar moments up to some order, projecting them onto a random one-dimensional subspace 

will produce similar one-dimensional marginal distributions. However, if the moments of one 

of the distributions differ from those of the random projection, then the one-dimensional 

marginal distributions will be different, and the two distributions can be distinguished with 

high probability. 

Once the functional data have been projected onto a lower-dimensional space, a hypothesis 

test can be performed to determine whether the functional means are equal. The choice of 

hypothesis test depends on the specific application, but a common approach is to use a t-test 

or an ANOVA test. One advantage of using random projections to test the equality of 

functional means is that it can be computationally efficient, mainly when dealing with high-

dimensional functional data. It can also be robust to noise and outliers in the data, as random 

projections can help filter out some of the noise. 

 

 

3. KRUSKAL-WALLIS TEST FOR FUNCTIONAL DATA  

 

This research presents an extension of the Kruskal-Wallis test for functional data based 

on random projections. 

We propose extending the Kruskal-Wallis test to the case of functional data (the 

observation for each individual in the sample corresponds to a functional datum). As in the 

univariate case, in the context of functional data analysis, statistical tests require the 

fulfillment of some assumptions. When the samples are small and the curves do not underlie 

a Gaussian stochastic process, the functional ANOVA could be inappropriate, and a non-

parametric method may be used as a valid alternative. Specifically, a Kruskal-Wallis test for 
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functional data based on random projections (KWFD) is proposed as an alternative 

methodology to the one-way functional ANOVA when the Gaussianity assumption is 

unrealistic. The KWFD is a non-parametric alternative for comparing the medians of 

functional data of three or more groups. We extended the KW test by randomly projecting the 

functional data onto a low-dimensional subspace. 

Let 𝑋𝑖𝑗(𝑡), 𝑖 = 1,2, ⋯ , 𝑛𝑗, 𝑗 = 1, ⋯ , 𝑘 a functional random sample of curves, where 𝑡 ∈  [𝑎, 𝑏] 

is the domain (generally time), 𝑖 correspond to an individual, and j the index for the level 

factor. The functional random variables are considered independent trajectories of the 

stochastic processes 𝑆𝑃(𝜇𝑗(𝑡), 𝛾(𝑠, 𝑡)), 𝑗 =  1, ⋯ , 𝑘 with a common covariance function 𝛾(𝑠, 𝑡). 

Let 𝑥𝑖𝑗(𝑡), 𝑖 = 1,2, ⋯ , 𝑛;    𝑗 = 1, ⋯ , 𝑘 be the recorded set of curves under the 𝑘 treatments. In 

the following, we describe the procedure for calculating the 𝐻 statistic to test the null 

hypothesis in (1). 

 

• Generate one Brownian motion 𝜐(𝑡) in the interval of interest 𝑇 ∈ ℝ. 

• Calculate the random projections 𝑥𝑖𝑗 = ∫ 𝑥𝑖𝑗(𝑡)𝜐(𝑡)𝑑𝑡,
𝑏

𝑎
  𝑖 = 1, ⋯ , 𝑛;   𝑗 = 1,2, ⋯ , 𝑘.  

• Calculate the rank of each projected curve within its group. 

• Using the random projections, proceed as in the usual way to calculate 𝑟𝑖𝑗, 𝑅𝑖𝑗, and the 

statistic 𝐻 in (3). 

• Reject the null hypothesis in (2) at the level 𝛼 if 𝐻𝑐 ≥ 𝜒𝑘−1;1−𝛼
2 . An alternative is 

calculating the p-value using a permutation test. 

 

The Kruskal-Wallis test for functional data based on random projections is calculated 

similarly to the univariate Kruskal-Wallis test. It is based on the sum of the ranks of the 

projected curves within each group. The test assumes no specific distribution for the 

functional data and can be robust to atypical curves. 

 

 

4. RESULTS AND DISCUSSION 

 

Section 4.1 presents a simulation study based on a single Brownian motion simulation. 

Section 4.2 shows the p-values obtained by generating 1000 random projections.  

 
4.1 Simulation study indicators 

 

We assess the power of the test to detect differences between medians of k-samples of 

functional data. To establish the performance, we show the results of a simulation study. We 

follow the procedure given in [15] to perform the analysis. For simplicity, just three groups of 

curves are considered. 

 
𝑋𝑖1(𝑡) = 𝜇(𝑡) + 𝜀𝑖(𝑡) 

𝑋𝑖2(𝑡) = 𝜇(𝑡) + 𝜀𝑖(𝑡) 
𝑋𝑖3(𝑡) = 𝜇(𝑡) + 𝛿(𝑡) + 𝜀𝑖(𝑡), 

(5) 
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Where 𝜇(𝑡) = sin(2𝜋𝑡) , 𝑡 ∈  (0, 10), is the mean function and the errors 𝜀𝑖𝑗(𝑡) = 1, 2, 3, 

follow a uniform distribution on [−1, 1]. As an initial illustration, a graph of a Brownian 

motion and 120 simulated curves according to the equations given in (5) are shown in 

Figure 1. The curves in red and green are very similar (these come from analogous models 

(rows 1 and 2 of the equations in 5, and the curves in blue involve an additional parameter 

𝛿(𝑡) = 𝛿 = 1.2 that makes these different from the previous ones. Notice in Figure 1 that the 

highest periodic peaks of the blue curves are close to 3, while in the other two cases (red and 

green curves), these are close to 2, i.e., the null hypothesis should be rejected. The errors are 

assumed to be uniform in the interval (1,1). Performing a hypothesis test on the means of 

functional data assuming that the processes are Gaussian with data such as those presented 

in Figure 1 would be inappropriate. 

 

 
Figure 1. Brownian motion 𝑣(𝑡)  =  𝑣(𝑡 − 1) +  𝜖(𝑡), 𝜖(𝑡)  ∼ Normal(0, 0.5), 𝑡 ∈  (0, 10) (above left) and curves 

simulated under the models 𝑋𝑖1(𝑡) = 𝜇(𝑡) + 𝜀𝑖(𝑡) (above right), 𝑋𝑖2(𝑡) = 𝜇(𝑡) + 𝜀𝑖(𝑡) (below left), and 𝑋𝑖3(𝑡) =
𝜇(𝑡) + 𝛿(𝑡) + 𝜀𝑖(𝑡) (below right), with 𝜇(𝑡)  =  𝑠𝑖𝑛(2𝜋𝑡), 𝛿(𝑡)  =  1.2, and 𝜀(𝑡)  ∼  𝑢𝑛𝑖𝑓𝑜𝑟𝑚(−1, 1). Source: created by 

the authors. 

 

 
Figure 2. Empirical power curves of the Kruskal-Wallis test according to the variation function δ(t) = δ and the 

sample size n. n = 10 (blue line), n = 30 (green line) n = 80 (red line), and n = 100 (black line) for each sample 

group. The bottom dashed line corresponds to the significance level 𝛼 =  5 %. Source: created by the authors. 
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To evaluate the power of the test, we considered 𝛿(𝑡)  =  𝛿, for all 𝑡 ∈  [0,10], with 

𝛿 =  0.0, ⋯ , 0.7. Four sample size scenarios are considered (𝑛 =  10, 30, 80, 120) for each 

sample group. In each case, 1000 realizations are generated. Based on each sample size, we 

performed a Kruskal-Wallis test as defined in Section 3. In each case, the power of the test is 

obtained as the percentage of 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 less than 0.05. We used the libraries fda.usc and 

stats of R to perform the analysis [22]. Figure 2 shows the empirical power curves for each of 

the sampling sizes 𝑛 and 𝛿(𝑡)  =  𝛿 values. Note that the power of the test increases when 

𝛿 and 𝑛 increase; that is, the simulation study provides evidence that the Kruskal-Wallis test 

for functional data is unbiased and consistent1.  

 

 
4.2 Real data analysis: Temperature curves in Canada 

 

We apply the Kruskal-Wallis test for functional data from Section 3 to a widely used 

meteorological data set in the context of the FDA [23]. This corresponds to the average daily 

(30-year) temperature (in degrees Celsius) at each of the 35 weather stations located in four 

climatic zones of Canada (in brackets the number of stations in each zone): Arctic (4), Pacific 

(7), Continental (9), and Atlantic (15) (see Figure 3). The Pacific zone is located on the west 

coast of Canada, including British Columbia and parts of Yukon and the Northwest 

territories. This area is defined by mild, rainy winters and cool, dry summers. The continental 

region covers the central parts of Canada, including Manitoba, Saskatchewan, and parts of 

Alberta and Ontario. Its climate is marked by cold winters and short and hot summers. The 

Atlantic zone covers the eastern parts of Canada, including Nova Scotia, New Brunswick, and 

Prince Edward Island. It has mild, wet winters and cool, moist summers. The Arctic region 

covers the northernmost parts of Canada, including Nunavut, the northwest territories, and 

parts of Yukon, Quebec, and Labrador. This zone has long, harsh winters and short, cool 

summers2. The daily temperature data for the four climatic zones were smoothed using a 

Fourier basis function. The curves obtained after smoothing are shown in Figure 3. The 

interest is to determine whether there are significant differences between the mean (median) 

curves of these areas. For this purpose, we apply the Kruskal-Wallis test presented in Section 

3. We generate random projections using (6) with 𝑖 the index corresponding to the weather 

station in each one of the four climatic zones (𝑗 = 1 (Arctic), 2 (Pacific), 3 (Continental), 4 

(Atlantic) ) and 𝜈(𝑡) a Brownian motion. The number of stations in each zone is 4 (Arctic), 7 

(Pacific), 9 (Continental), and 15 (Atlantic). 

 

𝑥𝑖𝑗 = ∫ 𝑥𝑖𝑗(𝑡)𝜈(𝑡) 𝑑𝑡,    𝑗 = 1, ⋯ ,4,   𝑎𝑛𝑑  𝑡 ∈  (0,365) (6) 

 

After obtaining the random projections, we conduct a classical Kruskal-Wallis test with 

these values. For this case, a 𝑝 −value = 0.00361 was obtained, and consequently, in 

concordance with Canada's Climatic description above, the null hypothesis is rejected. Note 

that there are some atypical curves in each panel of Figure 3. Using a classical ANOVA test 

based on random projections can be limited in this case. A robust methodology, as proposed 

here, could be more appropriate. Wilcoxon’s post-hoc tests [24] (Table 1) at a 10 % significance 

level of 10 % show that the medians of the Atlantic and Pacific zones are significantly different 

 
1 The R code used is available at https://github.com/frajaroco/KWfdRP/blob/main/KWtest.R 
2 See Canada's Climate Regions at the link https://sites.google.com/a/ocsb.ca/cgc-1d/a-unit-4-

climate/1-canadas-climate-regions). 

https://github.com/frajaroco/KWfdRP/blob/main/KWtest.R
https://sites.google.com/a/ocsb.ca/cgc-1d/a-unit-4-climate/1-canadas-climate-regions
https://sites.google.com/a/ocsb.ca/cgc-1d/a-unit-4-climate/1-canadas-climate-regions
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from the median of the Arctic region. At the same level, there are differences between the 

medians of the Atlantic and Continental regions. A graphical comparison (Figure 3) indicates 

marked differences between the curves of these regions. 

 

 
Figure 3. Temperature curves (𝑥𝑖𝑗(𝑡)) for the Atlantic, Continental, Pacific, and Arctic climate zones obtained 

after daily data (averages of 30 years) are smoothed using Fourier basis functions. Source: created by the 

authors. 

 
Table 1. Wilcoxon post-hoc tests. Source: created by the authors. 

 Atlantic Continental Pacific 

Continental 0.09 -- -- 

Pacific 0.95 0.25 -- 

Artic 0.01 0.20 0.07 

 

The results described above are based on random projections from a particular BM. The 

attached R code3, shows the values found with 1000 Brownian motions, and the general 

conclusion is the same. 

 
4.3 Discussion 

 

ANOVA for functional data has been widely discussed, and several approaches have been 

considered [1], [2]. Many of these are based on the Gaussianity assumption [8, 10]. Here, we 

adapt a classical non-parametric test to this scenario. The strength of the Kruskal-Wallis test 

for functional data proposed here lies in its versatility. It does not depend on the assumption 

of Gaussianity, thus extending its applicability to various real-world scenarios where data 

may deviate from a Gaussian distribution. This test is flexible and can be used with various 

types of functional data, including curves and time series. It does not impose strict 

assumptions on the data distribution, making it suitable for analyzing diverse datasets. This 

approach is particularly advantageous when dealing with data that may not conform to 

normality or have unknown distributions. Like other statistical tests, the Kruskal-Wallis test 

assumes the independence of observations within and between groups. Violations of this 

assumption could potentially affect the accuracy of the test results. If the Kruskal-Wallis test 

 
3 https://github.com/frajaroco/KWfdRP/blob/main/KWCanadianWeather.R 

https://github.com/frajaroco/KWfdRP/blob/main/KWCanadianWeather.R
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indicates significant differences between groups, post-hoc tests can be conducted to identify 

differences between groups. Many other non-parametric methods are available for post-hoc 

testing, each with strengths and limitations. 

 

 

5. CONCLUSIONS 

 

We propose a non-parametric method for the k-functional problem, which is useful when 

the sample size is small, the assumption of normality is not reasonable, or when there are 

atypical curves. We propose the use of one-dimensional random projections to solve the 

problem. After obtaining scalars from functions using random projections, a classical Kruskal-

Wallis test can be used to test the hypothesis. The results obtained from the simulated and 

real data show a good performance of the methodology. The results (Figure 2) illustrate that 

the Kruskal Wallis test extension performs well under the null hypothesis. Power increases 

for larger sample sizes and distance parameter. This plot allows us to validate that the 

proposed test is unbiased and consistent. Some authors consider using points-wise test 

statistics for functional data problems with two samples and similarly for the k-sample 

problem, although they are not global tests. Our approach is a helpful alternative when the 

sample is small, and the Gaussian assumption is inappropriate. 
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