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Abstract 

This paper proposes a new method to accurately estimate the power 

and energy production in urban photovoltaic (PV) systems, which are 

commonly covered by shades affecting its performance. The solution is 

based on an efficient algorithm designed to compute, in short time, an 

accurate model accounting for the shades impact. In such a way, the 

proposed approach improves classical solutions by significantly reducing 

the processing time to simulate long periods, e.g. months and years, but 

without introducing sensible errors. Therefore, this approach is suitable 

to estimate the production of PV systems for economical analyses such as 

the return-of-invested time calculation, but also to accurately design PV 

installations by selecting the right number of photovoltaic modules to 

supply the required load power. 
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Resumen 

Este artículo propone un nuevo método para estimar la potencia y 

energía producida por sistemas fotovoltaicos urbanos, los cuales son 

comúnmente cubiertos por sombras que afectan su desempeño. La solu-

ción se basa en un algoritmo para procesar, rápidamente, un modelo 

preciso que considera el efecto de las sombras. Esta solución provee un 

mejor desempeño en comparación con aproximaciones clásicas, ya que 

reduce significativamente el tiempo de cálculo sin introducir errores 

sensibles, permitiendo la simulación de largos periodos de operación, e.g. 

meses y años. Por lo tanto, esta solución es apropiada para realizar esti-

maciones de energía orientadas a análisis económicos, e.g. cálculo del 

tiempo de retorno de la inversión, así como para soportar el diseño de 

instalaciones fotovoltaicas, permitiendo el cálculo preciso del número de 

módulos requeridos para suplir el perfil de carga. 
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1. INTRODUCTION 

 

Photovoltaic (PV) power systems are in intense development 

due to its pollution-free operation. Moreover, PV systems are 

widely used in urban environments to take profit of rooftops and 

parking lots spaces (Hachem et al., 2011), where the generated 

power is commonly injected into the grid. But, in such applica-

tions, the objects surrounding the PV installation (buildings, trees, 

posts, etc.) produce shades over the PV modules. Such a situation 

is illustrated in Fig. 1, in which some PV modules are shaded in 

different proportions depending on the day time, where the partial 

shading strongly reduces the PV power production as demonstrat-

ed in (Petrone et al., 2007). Therefore, an accurate power and 

energy estimation, including the shading effect, is needed to per-

form an accurate design and economic evaluation of a PV installa-

tion: a realistic estimation of the PV power profile allows to define 

the number of PV modules required to fulfill the load requirement, 

while a realistic energy estimation allows to calculate the return-

of-investment time. 

 

 
Fig. 1. Urban PV system under shading conditions. Source: Authors 

 

Such a problem has been traditionally addressed by averaging 

the shade impact on the effective irradiance that reaches the PV 

modules, providing simplified equations to estimate the PV power 

production (Fuentes et al., 2007). But such an approach introduces 

significant errors since the power losses are not proportional to the 

shade size: small shades could produce large power losses (Silves-

tre et al., 2009). Therefore, a more detailed approach has been 

proposed in literature: model each PV module with its particular 

irradiance, it accounting also for the modules interaction. Exam-
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ples of such a technique are given in (Petrone et al., 2007) and 

(Petrone & Ramos, 2011), where two different models are proposed 

to provide different compromises between accuracy and simulation 

speed. 

Taking into account that commercial modules are composed by 

several PV cells connected in series and protected by a bypass 

diode, which avoids module destruction by overheating conditions 

in reverse operation (Silvestre et al., 2009), the PV system simula-

tion becomes a non-trivial task: complex cell models provide high 

accuracy, as the model introduced in (Petrone et al., 2007), but the 

required computational effort generates long simulation times, 

which makes impossible to estimate monthly or yearly perfor-

mances to provide a long-term analysis. On the contrary, the use 

of simplified models significantly reduces the simulation times, as 

the model presented in (Petrone & Ramos, 2011) to estimate long-

term performances, but it introduces errors that could lead to 

wrong designs or non-profitable decisions. 

Such conflictive objectives, i.e. high accuracy and fast pro-

cessing, are addressed in this paper by introducing a novel ap-

proach aimed at providing accurate estimations with low computa-

tional efforts, i.e. short simulation times. The proposed solution is 

based on an efficient algorithm designed to compute a complex cell 

model but simplifying the bypass diode model. The new approach 

is intended for urban PV installations, which commonly consists of 

several series-connected PV modules, named PV string, managed 

by a single PV inverter as in Fig. 1: the minimum number of mod-

ules in the string is defined by the minimum voltage required by 

the PV inverter to operate. The inverter tracks the optimal string 

voltage to maximize the PV power production, delivering such a 

power to the grid. Finally, each string is protected with a blocking 

diode Dbk from destructive negative current flows. 

 

 

2. MODELING THE PV MODULE 

 

Since a PV module consists in series-connected cells in parallel 

with a bypass diode, two models must be defined: the cells model 

and the diodes model. In literature, the series-connected cells are 
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commonly modeled using the single diode model depicted at the 

left of Fig. 2 (Petrone et al., 2007): it consists of a current source 

modeling the photo-induced current, a diode DJ modeling the p-n 

junction within the cells, and two resistances Rh and Rs modeling 

the saturation and ohmic effects. A simplified version of such a 

model, depicted at the right of Fig. 2 (Petrone & Ramos, 2011), 

disregards the contribution of both resistances. 

The photo-induced current iph is proportional to the effective 

irradiance reaching the PV module, it including the reduction 

caused by shades. The DJ current id is calculated as in (1) (Petrone 

et al., 2007), while the module current and voltage are calculated 

in (2) from Kirchhoff laws. In (1), iod and vt represent the satura-

tion current and thermal voltage of DJ, respectively. Finally, the 

model parameters (iod, vt, Rh and Rs) are calculated following the 

procedure in (Eicker, 2003) for the five parameters model (includ-

ing iph). 

 
      [   (     )   ]                

(1) 
                                  

(2) 

 

 
Fig. 2. Single diode model: complete (left) and simplified (right) versions. 

Source: Authors 

 

In the simplified model vpv = vd. Moreover, its parameters (iod 

and vt) are calculated following the procedure in (Eicker, 2003) for 

the three parameters model (also including iph). The main differ-

ences between both models, apart from their complexity, concern 

the parameters validity range: the complete model parameters are 

valid for the whole irradiance range ([0, 1000] W/m2 in earth), 

while the simplified model parameters generate errors when the 

irradiance diverges from the value used in the parameterization. 

A similar approach was followed to model the bypass diode: 

some papers adopt the Schottky equation to provide high accuracy, 
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while other papers adopt the ideal switch model to reduce com-

plexity. In such a way, the model proposed in (Petrone et al., 

2007), named Lambert-W model, adopts the complete single diode 

(SD) model and the Schottky equation (left circuit in Fig. 2) to 

represent the PV modules, while the model proposed in (Petrone & 

Ramos, 2011), named Inflection Points model, adopts the simpli-

fied single diode (SSD) model and the ideal switch equivalent 

(right circuit in Fig. 2) to represent the PV modules. Both models 

provide different compromises between accuracy and speed: Lam-

bert-W model provides high accuracy, but its long simulation 

times makes impossible to evaluate monthly or yearly profiles. In 

contrast, the Inflection Points model provides short simulation 

times to evaluate long power profiles, but it introduces errors that 

could lead to wrong decisions. 

To provide a tradeoff between both approaches, this paper pro-

poses to represent the PV cells with the SD model and to represent 

the bypass diodes with a modified switch: the bypass diode is 

closed when its voltage is higher than a real diode threshold volt-

age vb, otherwise the diode is open. Fig. 3 shows the current-

voltage (I-V) characteristics of the proposed, Lambert-W and In-

flection Points models, where the improvement over the ideal 

switch approach is evident (vb = 0.2 V). Taking into account that 

the Schottky equation is an exponential expression similar to (1), 

the proposed model provides a satisfactory accuracy with a small 

complexity increment. 

 

 
Fig. 3. Comparison of the bypass diodes models. Source: Authors 

 

Similarly, Fig. 4 shows the comparison between the three 

modules models. At the left, the I-V curves show that the three 

models accurately describe the short-circuit current (Isc), open-
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circuit voltage (Voc) and maximum power point (MPP). Such a 

figure also put in evidence the high accuracy provided by the pro-

posed approach, in comparison with the Inflection Points model, 

for the reproduction of the PV module behavior as power source 

(first quadrant: positive PV current and voltage). 

 

 
Fig. 4. Comparison of the PV modules models. Source: Authors 

 

The right part of Fig. 4 presents the models behavior at the 

second quadrant (positive current and negative voltage), in which 

the PV module operated as a load. Such results show the im-

provement provided by the proposed model over the Inflection 

Points approach: since the diode voltage is negative, it forces the 

module to dissipate power, which is modeled by the vb voltage. 

Moreover, taking into account that the string current imposes the 

module current, the diode current will be always lower than the 

maximum iph value. In the simulation presented in Fig. 4 iph = 5.13 

A, therefore the difference between the proposed and Lambert-W 

models is negligible. 

 

 

3. MODELING THE PV STRING 

 

As depicted in Fig. 1, a PV string is formed by several (N) 

modules in series with a blocking diode Dbk. Taking into account 

that, in general, each PV module could exhibit a particular irradi-

ance, different from the one of the other modules, the bypass di-

odes become active when its voltage is higher than the threshold 

voltage vb as in Fig. 3. Therefore, the modules operate at the sec-
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ond quadrant (as a load, ppv < 0) for PV voltages within -vb < vpv < 

0. Such a condition is considered by both the Lambert-W and 

proposed approaches; instead, the Inflection Points approach 

consider the PV module inactive (ppv = 0) for vpv < 0 as depicted at 

the right of Fig. 4. 

To estimate the power production of a PV string, the model in 

(Petrone et al., 2007) evaluates all possible string voltages to find 

the MPP power for each irradiance condition. Such a procedure 

permits to estimate the maximum power available for a given 

irradiance profile of a geographical area. But, to find the MPP 

power it is required to calculate the string current for the evaluat-

ed vst, which in turn requires solving the N+1 non-linear equations 

given in (3)-(4), where 1  k  N-1 and (vt,bk, io,bk) belong to the 

blocking diode model. Moreover, since solving (3) uses (1) and (2), 

each component of (3) becomes an implicit equation that requires 

the specialized Lambert-W function to find the solution (Petrone 

et al., 2007), which strongly increases the computational effort. 

Hence, since the Lambert-W function must be used N times in 

each vst evaluation, the simulation time is very long. 

 
                              

(3) 

    ∑     

 

   

         (
   
     

  )
 

(4) 

 

Instead, the model proposed in (Petrone & Ramos, 2011) does 

not require the Lambert-W function: the same equations system in 

(3)-(4) must be solved, but since Rh and Rs are not considered, each 

component of (3) is an explicit equation. Moreover, since the by-

pass diode is modeled by an ideal switch, the number of equations 

in (3) changes inversely with the number of bypass diodes active. 

Therefore, the Inflection Points model requires a significantly 

shorter simulation time in comparison with the Lambert-W ap-

proach, but it introduces calculation errors due to the simplifica-

tions adopted. In any case, the model in (Petrone & Ramos, 2011) 

still requires to solve a non-linear equation system, which uses an 

optimization algorithm such as the Newton-Raphson or trust-

region methods. 

The algorithm proposed in this paper overcomes the main 
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drawbacks of the previous solutions. The algorithm is divided in 

three parts as depicted in Fig. 5: the first process is used to obtain 

the I-V curve of each PV module independently, it using (1) and 

(2), which are explicitly evaluated for different values of vd. Such 

an approach avoids the requirement of the Lambert-W function 

without introducing simplification errors. The second procedure is 

used to obtain the string I-V curve by adding the modules voltage 

at the evaluated string current. Since all the modules are in series 

their current is the same, hence the modules voltages are explicit-

ly extracted from the modules I-V curves generated by the first 

procedure. Then, both processes are iteratively executed for each 

irradiance value to estimate the power and energy production. 

Finally, the proposed approach does not require to solve a non-

linear equation system, hence it provides high accuracy and short 

simulation times. 

 

 
Fig. 5. Proposed approach to estimate the string power and energy production. 

Source: Authors 

 

 

4. PERFORMANCE EVALUATION OF THE PROPOSED APPROACH 

 

The performance of the proposed approach is evaluated in con-

trast with both the accurate (Lambert-W) and the fast (Inflection 

points) solutions. Fig. 6 shows the simulation of a string with N = 

5, an ambient irradiance of 1000 W/m2 and the presence of several 

shade sources that generate the following shading profile: the 

module PV1 receives the 94 % of the irradiance, while the modules 

PV2 to PV5 receive 60 %, 40 %, 20 % and 10 %, respectively. The 

figure illustrates the accurate simulation performed by the pro-

posed approach, which results are indistinguishable from the 

Lambert-W simulation, while the Inflection Points approach in-
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troduces significant errors. To provide a more general comparison, 

Fig. 7 presents the simulation times Tp and normalized errors 

NSSE (Saavedra et al., 2011) for PV string sizes between 2 and 10 

modules. 

 

 
Fig. 6. Simulation of string with N = 5. Source: Authors 

 

The results put in evidence the strong reduction in the simula-

tion time provided by the proposed approach: in Fig. 7 the Tp of 

the Lambert-W approach is divided by 100 to allow its plotting in 

the same scale of the Inflection points and proposed approaches. 

In example, for N = 6, the proposed approach requires 0.034 s, 

while the Inflection Points and Lambert-W require 1.40 s and 

191.95 s, respectively. Similarly, the error generated by the pro-

posed approach, with respect to the more accurate Lambert-W, is 

much smaller than the error introduced by the Inflection Points 

solution. In any case, the error generated by the proposed ap-

proach is negligible: in example, for N = 6, the proposed approach 

introduces an error of 0.12 %, while the Inflection Points solution 

introduces an error of 2.88 %. 

In addition, the results show that for larger N the difference 

between the simulation times increases, but the errors are almost 

constant. Hence, the proposed approach provides accurate results 

in very short times, which allows to estimate the power production 

of large PV strings in long periods. 
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Fig. 7. Simulation accuracy and processing times for multiple string sizes. Source: 

Authors 

 

 

5. APPLICATION EXAMPLE 

 

To illustrate the use of the proposed solution, a realistic appli-

cation is considered: for a commercial PV inverter (SolarEdge 

SE2200) that requires 350 V to operate, 20 BP-585 PV modules 

must be used to form the string. But, considering several shade 

sources in the available area that produce the profile described in 

Table 1, it is required to estimate the yearly energy production to 

evaluate the economic convenience of the PV installation. 

 
Table 1. Shading profile for the application example. Source: Authors 

PV1-PV10 94% 86% 66% 61% 44% 42% 41% 40% 39% 38% 

PV11-PV20 37% 33% 31% 28% 27% 26% 20% 10% 5% 4% 

 

The simulation of a single irradiance condition takes 1380 s 

(23 minutes) with the Lambert-W approach, 6.5 s with the Inflec-

tion Points approach, while the proposed approach requires 0.0061 

s with an error of 0.1 %. To simulate a day (8.5 hours with data 

each 30 s), the Lambert-W will require 391 hours (16.3 days), the 

Inflection Points will require 1.84 hours, while the proposed ap-

proach requires 6.24 s. Finally, to simulate a year (365 days), the 

Lambert-W will require 16.4 years, the Inflection Points will re-

quire 28 days, while the proposed approach requires 37 minutes. 

Therefore, the yearly simulation of the string with N = 20 is 



[92] Ramos et al. / Energy Prediction in Urban Photovoltaic Systems 

 Tecno Lógicas 

not practical with both the Lambert-W or Inflection Points ap-

proaches. Instead, the proposed approach makes possible to per-

form the evaluation: Fig. 8 shows the simulation of a day in south-

ern Italy performed in 6.24 s, where the irradiance profile is pre-

sented at the left and the power production at the right. Similarly, 

Fig. 9 shows the yearly energy production, where the irradiance 

profile in Fig. 8 changes depending on the month. Such a simula-

tion was performed in 37 minutes. Finally, with the information 

provided in Fig. 9 it is possible to calculate the return-of-

investment time (in years) using the costs of the PV system and 

kWh in the geographical region under evaluation. 

 

 
Fig. 8. Simulation of day for N = 20, performed in 6.24 s. Source: Authors 

 

 
Fig. 9. Simulation of a year for N = 20, performed in 37 min. Source: Authors 

 

 

6. CONCLUSIONS 

 

A novel approach to estimate the power and energy production 

in urban PV strings was proposed. The method is based on an 

accurate PV cell model and an approximated diode model, but 

introducing an efficient algorithm to simulate the string without 

requiring the Lambert-W function or to solving a non-linear equa-

tion system. Instead, N non-nested and explicit equations are used 

to calculate the string power, which eventually provides high 
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accuracy and low processing times. The results put in evidence the 

usefulness of such an approach to simulate long periods with high 

precision. Finally, the method could be extended to consider mul-

tiple strings to evaluate PV arrays. 
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