Technical-economic feasibility analysis of micro grids integrating fuel cells in non-interconnected zones in Colombia

  • Daniel González-Montoya Instituto Tecnológico Metropolitano
  • Carlos A. Ramos-Paja Universidad Nacional de Colombia
  • Bernardo A. Potosí-Guerrero Universidad Nacional de Colombia
  • Elkin E. Henao-Bravo Universidad Nacional de Colombia
  • Andrés Julián Saavedra-Montes Universidad Nacional de Colombia
Keywords: Fuel cells, micro grids, HOMER software, non-interconnected zones, CO2 emissions

Abstract

The sustainable power solutions provided to non-interconnected zones should be based on the renewable energy resources available in each area. This presents a challenge for the techno-economic feasibility of alternative solutions through micro grids. The objective of this work is to analyze, using HOMER software, the techno-economic impact of introducing fuel cells on cost reduction during the lifetime of micro grids in non-interconnected zones. Such impact is evaluated in the technical design of the micro grid as Present Value and Levelized Cost of Electricity ($/kWh). The analysis considers the calculation of the demand of a generic village, the size and cost of the technologies that constitute the micro grid to satisfy the demand, and the availability of solar and wind power in two areas located at different latitudes in Colombia. In addition, the effect of introducing fuel cells into the energy mix was examined. Finally, the advantages were highlighted by comparing each case with traditional generation alternatives based on diesel consumption.

Downloads

Download data is not yet available.

Author Biographies

Daniel González-Montoya, Instituto Tecnológico Metropolitano

PhD. en Ingeniería Automática, Departamento de Electrónica y Telecomunicaciones, Ingeniero de Control, Instituto Tecnológico Metropolitano, Medellín-Colombia

Carlos A. Ramos-Paja, Universidad Nacional de Colombia

PhD. en Ingeniería Electrónica, Automática y Comunicaciones, Ingeniero Electrónico, Departamento de Energía Eléctrica y Automática, Universidad Nacional de Colombia sede Medellín, Medellín-Colombia

Bernardo A. Potosí-Guerrero, Universidad Nacional de Colombia

Ingeniero de Control, Departamento de Energía Eléctrica y Automática, Universidad Nacional de Colombia sede Medellín

Elkin E. Henao-Bravo, Universidad Nacional de Colombia

MSc. en Ingeniería Eléctrica, Ingeniero Electrónico, Departamento de Mecatrónica y Electromecánica, Instituto Tecnológico Metropolitano, Medellín-Colombia

Andrés Julián Saavedra-Montes, Universidad Nacional de Colombia

PhD. en Ingeniería Eléctrica, Ingeniero Electricista, Departamento de Energía Eléctrica y Automática, Universidad Nacional de Colombia sede Medellín, Medellín-Colombia

References

[1] Unidad de Planeación Minero Energética and Consorcio Energético CORPOEMA, “Plan de Desarrollo para las Fuentes no Convencionales de Energía en Colombia (PDFNCE),” 2010.
[2] Congreso de la República de Colombia, Ley 1715 del 13 de Mayo de 2014 Por medio de la cual se regula la integración de las energías renovables no convencionales al Sistema Energético Nacional. Colombia, 2014, pp. 1–20.
[3] Ministerio de Ambiente y Desarrollo Sostenible, Resolución 0186 de 2012, no. Marzo 13. Colombia, 2012, pp. 1–8.
[4] A. M. Eltamaly, M. A. Mohamed, M. S. Al-Saud, and A. I. Alolah, “Load management as a smart grid concept for sizing and designing of hybrid renewable energy systems,” Eng. Optim., vol. 49, no. 10, pp. 1813–1828, Oct. 2017.
[5] E. I. Zoulias et al., “Integration of hydrogen energy technologies in stand-alone power systems analysis of the current potential for applications,” Renew. Sustain. Energy Rev., vol. 10, no. 5, pp. 432–462, 2006.
[6] L. Valverde, C. Bordons, and F. Rosa, “Integration of Fuel Cell Technologies in Renewable-Energy-Based Microgrids Optimizing Operational Costs and Durability,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 167–177, 2016.
[7] E. I. Zoulias and N. Lymberopoulos, “Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems,” Renew. Energy, vol. 32, no. 4, pp. 680–696, 2007.
[8] G. J. Dalton, D. A. Lockington, and T. E. Baldock, “Feasibility analysis of stand-alone renewable energy supply options for a large hotel,” Renew. Energy, vol. 33, no. 7, pp. 1475–1490, 2008.
[9] R. H. Wolk, “Fuel cells for homes and hospitals,” IEEE Spectr., vol. 36, no. 5, pp. 45–52, 1999.
[10] D. Audring and G. Balzer, “Operating stationary fuel cells on power system and microgrids,” in 2003 IEEE Bologna Power Tech Conference Proceedings, 2003, vol. 4, p. 6 pp. Vol.4.
[11] A. K. Basu, A. Bhattacharya, S.P. Chowdhury, S. Chowdhury, and P. A. Crossley, “Reliability study of a micro grid system with optimal sizing and placement of DER,” in CIRED Seminar 2008: SmartGrids for Distribution, 2008, p. 84–84(1).

[12] C. Wallmark and P. Alvfors, “Technical design and economic evaluation of a stand-alone PEFC system for buildings in Sweden,” J. Power Sources, vol. 118, no. 1, pp. 358–366, 2003.
[13] M. Santarelli, M. Calı̀, and S. Macagno, “Design and analysis of stand-alone hydrogen energy systems with different renewable sources,” Int. J. Hydrogen Energy, vol. 29, no. 15, pp. 1571–1586, 2004.
[14] FuelCell Energy, “Combined Heat & Power (CHP) | FuelCell Energy.” [Online]. Available: https://www.fuelcellenergy.com/why-fuelcell-energy/benefits/combined-heat-power-chp/. [Accessed: 04-Dec-2017].
[15] T. Bayar, “Fuel cell CHP goes MW-scale in Germany - Decentralized Energy,” 2015. [Online]. Available: http://www.decentralized-energy.com/articles/2015/08/fuel-cell-chp-goes-mw-scale-in-germany.html. [Accessed: 04-Dec-2017].
[16] Instituto de Planificación y Promoción de Soluciones Energéticas -IPSE, “Oportunidades actuales en el campo de las energías renovables en Colombia,” Bogotá, 2015.
[17] Y. A. Muñoz-Maldonado, “Optimización de recursos energéticos en zonas aisladas mediante estrategias de suministro y consumo,” Universitat Politècnica de València, Valencia (Spain), 2012.
[18] Comisión de Regulación de Energía y Gas CREG, “Propuesta para remunerar la generación, distribución y comercialización de Energía Eléctrica en las ZNI,” Bogotá, 2014.
[19] NASA, “NASA Surface meteorology and Solar Energy: HOMER Data,” 2018. [Online]. Available: https://eosweb.larc.nasa.gov/cgi-bin/sse/homer.cgi?email=skip@larc.nasa.gov. [Accessed: 05-Apr-2018].
[20] Consorcio Energético CORPOEMA, “Formulacion de un plan de desarrollo para las fuentes no convencionales de energía en Colombia (PNFNCE),” Bogotá, 2010.
[21] FRONIUS, “Technical Data Fronius Primo 5.0-1,” 2017. [Online]. Available: https://www3.fronius.com/cps/rde/xbcr/SID-A1216390-3B26DC08/fronius_usa/42_0410_2116_396914_snapshot.pdf. [Accessed: 04-Dec-2017].
[22] AEOLOS Wind Turbine, “Datasheet Aeolos-H 20kW,” windturbinestar.com. [Online]. Available: http://www.nexosonline.com/web/categorias/Energia Renovable/Aeolos - Wind Turbine/Aeolos-H-20kw-Brochure.pdf. [Accessed: 04-Dec-2017].
[23] USAENE LLC, “Determinación de Inversiones y Gastos de Administración, Operación y Mantenimiento para la actividad de Generación en Zonas No Interconectadas con Plantas Térmicas,” 2013.
How to Cite
González-Montoya, D., Ramos-Paja, C., Potosí-Guerrero, B., Henao-Bravo, E., & Saavedra-Montes, A. (2018). Technical-economic feasibility analysis of micro grids integrating fuel cells in non-interconnected zones in Colombia. TecnoLógicas, 21(43), 71-89. https://doi.org/10.22430/22565337.1057
Published
2018-09-14
Section
Articles

Most read articles by the same author(s)