Determination of Uncertainty in Measuring Instruments in Electrical Engineering Programs

Keywords: Measurement Uncertainty, Measurement Errors, Engineering Education, Electric Variables, Design Methodology


When electrical engineering students start their instrumentation and measurement course, they have previously taken calculus, physics, probability, and statistics. However, they have problems to apply the knowledge they acquired to solve problems related to electrical measurements and variables in the profession, such as water flows, solar radiation, wind speed and water levels. This paper shows how to integrate all the concepts involved in the process to calculate measurement uncertainty in order to improve the way the results of measurements and/or error determination processes are described. For that purpose, this study presents an applied exercise and a methodological process by means of an example, where the value of a resistance is determined taking into account the data of voltage and current measurements and using few data. The objective is to focus the process on estimating Type A and Type B uncertainty and the factors that affect the measurement processes, such as uncertainty due to random variations of the measured signals, instrument defects, imprecision of the instruments, or their resolution. During the calculation of uncertainty proposed here, students use the probabilistic knowledge they have acquired after they determined the value of the uncertainty U from the combined uncertainty u饾憪 (R), where the coverage factor is taken into account. This allows us to learn about the importance of expressing the results with higher (+) or lower (-) values of uncertainty. In the exercise carried out in this work, R = 733.31 +/- 8.10 ohm.

Author Biographies

脕lvaro Espinel-Ortega, Universidad Distrital Francisco Jos茅 de Caldas, Colombia

PhD. in Software Engineering, Engineering Doctorate Program, Universidad Distrital Francisco Jos茅 de Caldas, Bogot谩-Colombia,

Adriana Vega-E*, Universidad Distrital Francisco Jose de Caldas, Colombia

PhD. in Engineering, Electrical Engineering Program, Universidad Distrital Francisco Jos茅 de Caldas, Bogot谩-Colombia,


G. L贸pez and S. Acu帽a, 鈥淎prendizaje cooperativo en el aula,鈥 Inventio, vol. 7, no. 14, pp. 29鈥38, Apr. 2011.

R. R. Yager and J. P. Espada, 鈥淣ew Advances in the Internet of Things,鈥 1st ed., Jord谩n, Ed. Springer International Publishing, 2018.

E. J. Hern谩ndez-Leal, N. D. Duque-M茅ndez, and J. Moreno-Cadavid, 鈥淏ig Data: una exploraci贸n de investigaciones, tecnolog铆as y casos de aplicaci贸n,鈥 TecnoL贸gicas, vol. 20, no. 39, pp. 15鈥38, May. 2017.

J. Botero Valencia, L. Casta帽o Londo帽o, and D. Marquez Viloria, 鈥淭rends in the Internet of Things,鈥 TecnoL贸gicas, vol. 22, no. 44, pp. 1鈥2, Jan. 2019.

O. Revelo-S谩nchez, C. A. Collazos-Ord贸帽ez, and J. A. Jim茅nez-Toledo, 鈥淓l trabajo colaborativo como estrategia did谩ctica para la ense帽anza/aprendizaje de la programaci贸n: una revisi贸n sistem谩tica de literatura,鈥 TecnoL贸gicas, vol. 21, no. 41, pp. 115鈥134. Jan. 2018.

J. I. Cocunubo-Su谩rez, J. A. Parra-Valencia, and J. E. Ot谩lora-Luna, 鈥淧ropuesta para la evaluaci贸n de Entornos Virtuales de Ense帽anza Aprendizaje con base en est谩ndares de Usabilidad,鈥 TecnoL贸gicas, vol. 21, no. 41, pp. 135鈥147. Jan. 2018.

M. Hern谩ndez-de-Men茅ndez, A. Vallejo Guevara, J. C. Tud贸n Mart铆nez, D. Hern谩ndez Alc谩ntara, and R. Morales-Menendez, 鈥淎ctive learning in engineering education. A review of fundamentals, best practices and experiences,鈥 Int. J. Interact. Des. Manuf., vol. 13, no. 3, pp. 909鈥922, Sep. 2019.

A. M. Ruiz-Ortega, J. J. Gallardo-Rodr铆guez, E. Navarro-L贸pez, and M. del C. Cer贸n-Garc铆a, 鈥淧roject-led-education experience as a partial strategy in first years of engineering courses,鈥 Educ. Chem. Eng., vol. 29, pp. 1鈥8, Oct. 2019.

X. Xie, X. Li, D. Bi, Q. Zhou, S. Xie, and Y. Xie, 鈥淢easurement Uncertainty Estimation for Electromagnetism Devices and Equipment Using Extreme Fisher Information,鈥 IEEE Trans. Appl. Supercond., vol. 26, no. 7, pp. 1鈥5, Oct. 2016.

J. J. C谩rdenas-Monsalve, A. F. Ram铆rez-Barrera, and E. Delgado-Trejos, 鈥淓valuaci贸n y aplicaci贸n de la incertidumbre de medici贸n en la determinaci贸n de las emisiones de fuentes fijas: una revisi贸n,鈥 TecnoL贸gicas, vol. 21, no. 42, pp. 231鈥244, May. 2018.

H. A. Canseco, I. L贸pez, J. C. Olivares Galv谩n, J. Jim茅nez, F. Gonz谩lez and R. Escarela P茅rez 鈥淒ise帽o y construcci贸n de un prototipo de adquisici贸n de datos para diagnosticar fallas de cortocircuito en transformadores,鈥 Pist. Educ., no. 38, vol. 120, pp. 598鈥615, Oct. 2016.

C. G. L贸pez Calvachi, 鈥淒ise帽o e implementaci贸n de un prototipo de medici贸n de consumo el茅ctrico inal谩mbrico para art铆culos del hogar monitoreado mediante una p谩gina web鈥, Tesis pregrado, Facultad de ingenier铆a y ciencias aplicadas, Universidad de las Am茅ricas, Quito, 2018. [En l铆nea] Disponible en:

A. I. V. Fern谩ndez, J. T. D. las Muelas, L. A. Toribio, M. S. P茅rez, R. M. Andrade, and S. S. S谩nchez, Fundamentos b谩sicos de la electricidad y magnetismo, 1st ed. Universidad Aut贸noma San Francisco, 2009.

I. Kestin, 鈥淪tatistics in medicine,鈥 Anaesth. Intensive Care Med., vol. 13, no. 4, pp. 181鈥188. Apr. 2012.

M. S. Muthuvalu, V. S. Asirvadam, and G. Mashadov, 鈥淧erformance analysis of Arithmetic Mean method in determining peak junction temperature of semiconductor device,鈥 Ain Shams Eng. J., vol. 6, no. 4, pp. 1203鈥1210. Dec. 2015.

A. Rodr铆guez Rodr铆guez, R. J. Lima Pisco, M. A. Padilla Orlando, T. Y. Garcia Ponce, R. Y. Vera Loor, and J. C. Pino Tarrag贸, La estad铆stica: gnosis del ser humano. Editorial Cient铆fica 3Ciencias, 2018.

M. E. Gamboa, 鈥淓stad铆stica aplicada a la investigaci贸n educativa,鈥 Rev. Dilemas Contemp. Educ. Pol铆tica y Valores, vol. 2, no. 2, pp. 1鈥32, Oct. 2018.

B. E. B. Carvalho and N. G. Bretas, 鈥淕ross error processing in state estimation: Comparing the residual and the error tests,鈥 in 2017 IEEE Manchester PowerTech, Manchester, 2017, pp. 1鈥5.

V. Witkovsky, G. Wimmer, Z. Durisova, S. Duris, and R. Palencar, 鈥淏rief overview of methods for measurement uncertainty analysis: GUM uncertainty framework, Monte Carlo method, characteristic function approach,鈥 in 2017 11th International Conference on Measurement, Smolenice, 2017, pp. 35鈥38.

O. A. de Acreditaci贸n, Estadistica Procedimientos para la evaluaci贸n de la incertidumbre de la medici贸n, 1st ed. Irma, 2018.

W. A. Schmid and R. J. L. Mart铆nez, Gu铆a para la expresi贸n de la incertidumbre de la medici贸n, 1st ed. Centro Nacional de Metrolog铆a, 2000.

E. Alnasser, 鈥淎 Novel Fully Analog Null Instrument for Resistive Wheatstone Bridge With a Single Resistive Sensor,鈥 IEEE Sens. J., vol. 18, no. 2, pp. 635鈥640, Jan. 2018.

Joint Committee for Guides in Metrology (JCGM), 鈥淓valuation of measurement data 鈥 Guide to the expression of uncertainty in measurement鈥, Guides to the expression of uncertainty in measurement, 2008.

I. P. Pokrajac, D. Vucic, and P. Okiljevic, 鈥淒irect position determination of wideband signals: Coherent and noncoherent approach,鈥 in 2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS), Servia, 2013, pp. 77鈥80.

How to Cite
Espinel-Ortega, 脕lvaro, & Vega-E, A. (2019). Determination of Uncertainty in Measuring Instruments in Electrical Engineering Programs . TecnoL贸gicas, 22(46), 171-183.


Download data is not yet available.
Research Papers