Quasi-Dynamic Analysis of a Local Distribution System with Distributed Generation. Study Case: The IEEE 13 Node System

Keywords: Distributed Generation, Quasi-Dynamic Simulation, Small-Scale Autogenerators, Local Distribution System, Medium Voltage Feeder


Distributed generation is one of the most accepted strategies to attend the increase in electrical demand around the world. Since 2014, Colombian government agencies have enacted laws and resolutions to promote and regulate the introduction of different generation technologies into the country’s electrical system. The incorporation of distributed generation systems into conventional distribution networks can cause problems if technical studies are not previously carried out to determine the consequences of the start of the operations of these new generation technologies. This scenario represents a new challenge for distribution networks operators because they must ensure that their systems can integrate these new generation sources without affecting the correct operation of the grid.

In this article, the IEEE 13 nodes system is modified by incorporating the load curves of the three types of consumers in the Colombian electricity market into the model. Additionally, distributed generation systems from non-conventional sources of energy are integrated into two system nodes in order to perform a quasi-dynamic analysis of the different electrical variables, which can be used to determine the impact of these new technologies on a local distribution system. The voltage profiles and active and reactive power do not show considerable changes in the behavior of the electrical network; however, in the simulation scenarios where distributed generators are operating, the system exhibits a considerable increase in lines losses. There are two alternatives to manage these unusual levels in the operation of the nodes with distributed generation: (1) operating these new DG nodes in islanded mode or (2) strengthening the local distribution system through the implementation of new distribution lines in the network.

Author Biographies

Luis Felipe Gaitán*, Universidad Distrital Francisco José de Caldas ,Colombia

Electrical Engineer, Research Group in Compatibility and Electromagnetic Interference GCEM UD, Universidad Distrital Francisco Jose de Caldas, Bogotá-Colombia, luis.f.g@ieee.org

Juan David Gómez , Universidad Distrital Francisco Jose de Caldas, Colombia

Electrical Engineer, Research Group in Compatibility and Electromagnetic Interference GCEM UD, Universidad Distrital Francisco Jose de Caldas, Bogotá-Colombia, juan.d.g@ieee.org

Edwin Rivas-Trujillo , Universidad Distrital Francisco Jose de Caldas, Colombia

PhD. in Engineering, Faculty of Electrical Engineering, Research Group in Compatibility and Electromagnetic Interference GCEM UD, Universidad Distrital Francisco Jose de Caldas, Bogotá-Colombia, erivas@udistrital.edu.co


N. K. Roy and H. R. Pota, “Current Status and Issues of Concern for the Integration of Distributed Generation Into Electricity Networks,” IEEE Syst. J., vol. 9, no. 3, pp. 933–944, Sep. 2015.


Ley 1715 de 2014. No. 49.150, 2014.

[En linea], Disponible en: http://www.secretariasenado.gov.co/senado/basedoc/ley_1715_2014.html

Ministerio de Minas y Energía, Resolución No. 30 de febrero de 2018. 2018. [En linea], Disponible en:


R. Huang, G. Cokkinides, C. Hedrington, and S. A. P. Meliopoulos, “Distribution System Distributed Quasi-Dynamic State Estimator,” IEEE Trans. Smart Grid, vol. 7, no. 6, pp. 2761–2770, Nov. 2016.


F. Adinolfi, G. M. Burt, P. Crolla, F. D’Agostino, M. Saviozzi, and F. Silvestro, “Distributed Energy Resources Management in a Low-Voltage Test Facility,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2593–2603, Apr. 2015.


D. López-García, A. Arango-Manrique, and S. X. Carvajal-Quintero, “Integration of distributed energy resources in isolated microgrids: the Colombian paradigm,” TecnoLógicas, vol. 21, no. 42, pp. 13–30,

May 2018. https://doi.org/10.22430/22565337.774

J. D. Marín-Jiménez, S. X. Carvajal-Quintero, and J. M. Guerrero, “Island operation capability in the Colombian electrical market: a promising ancillary service of distributed energy resources,” TecnoLógicas, vol. 21, no. 42, pp. 169–185, May 2018. https://doi.org/10.22430/22565337.786

J. R. Rice, “Spatio-temporal Complexity of Slip on a Fault,” J. Geophys. Res., vol. 98, no. B6, pp. 9885–9907, June. 1993. http://citeseerx.ist.psu.edu/viewdoc/download?doi=

G. Zöller, M. Holschneider, and Y. Ben-Zion, “Quasi-static and Quasi-dynamic Modeling of Earthquake Failure at Intermediate Scales,” Pure Appl. Geophys., vol. 161, no. 9–10, pp. 2103–2118, Aug. 2004.


R. Yao, S. Huang, K. Sun, F. Liu, X. Zhang, and S. Mei, “A Multi-Timescale Quasi-Dynamic Model for Simulation of Cascading Outages,” IEEE Trans. Power Syst., vol. 31, no. 4, pp. 3189–3201, Jul. 2016.


A. H. Habib, V. R. Disfani, J. Kleissl, and R. A. de Callafon, “Quasi-dynamic load and battery sizing and scheduling for stand-alone solar system using mixed-integer linear programming,” in 2016 IEEE Conference on Control Applications (CCA),Buenos aires, 2016, pp. 1476–1481. https://doi.org/10.1109/CCA.2016.7588009

Z. Tian, B. Perers, S. Furbo, and J. Fan, “Analysis and validation of a quasi-dynamic model for a solar collector field with flat plate collectors and parabolic trough collectors in series for district heating,” Energy, vol. 142, pp. 130–138, Jan. 2018. https://doi.org/10.1016/j.energy.2017.09.135

W. H. Kersting, “Radial distribution test feeders,” in 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194), Columbus OH, 2001. pp. 908–912. https://doi.org/10.1109/PESW.2001.916993

S. R. Castaño, Redes de Distribución de Energía, 3rd. Manizales: Universidad Nacional de Colombia, 2004.

A. Pedraza, D. Reyes, C. Gómez, and F. Santamaría, “Impacto de la Generación Distribuida sobre el Esquema de Protecciones en una Red de Distribución,” in Seminario Internacional en Fuentes Alternativas de Energía y Eficiencia Energética, Bogotá 2013. p. 172.

PowerFactory DIgSilent, “Digsilent powerfactory 15 user manual,” 2014.


O. D. Montoya-Giraldo, C. A. Ramírez- Vanegas, and L. F. Grisales-Noreña, “Localización y Dimensionamiento Óptimo de Generadores Distribuidos y Bancos de Condensadores en Sistemas de Distribución,” Sci. Tech., vol. 23, no. 03, pp. 308–314, Sep. 2018.

V. Marzano, A. Papola, F. Simonelli, and M. Papageorgiou, “A Kalman Filter for Quasi-Dynamic o-d Flow Estimation/Updating,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 11, pp. 3604–3612, Nov. 2018. https://doi.org/10.1109/TITS.2018.2865610

Z. Pan, J. Wu, H. Sun, Q. Guo, and M. Abeysekera, “Quasi-dynamic interactions and security control of integrated electricity and heating systems in normal operations,” CSEE J. Power Energy Syst., vol. 5, no. 1, pp. 120–129, Mar. 2019. https://doi.org/10.17775/CSEEJPES.2018.00240

X. Qin, X. Shen, H. Sun, and Q. Guo, “A Quasi-Dynamic Model and Corresponding Calculation Method for Integrated Energy System with Electricity and Heat,” Energy Procedia, vol. 158, pp. 6413–6418, Feb. 2019. https://doi.org/10.1016/j.egypro.2019.01.195

D. Raoofsheibani, D. Henschel, P. Hinkel, M. Ostermann, W. H. Wellssow, and U. Spanel, “Quasi-dynamic model of VSC-HVDC transmission systems for an operator training simulator application,” Electr. Power Syst. Res., vol. 163 part B., pp. 733–743, Oct. 2018. https://doi.org/10.1016/j.epsr.2017.08.029

DIgSILENT, “PowerFactory 2018,” 2018. https://www.digsilent.de/en/downloads.html

J. Núñez López, “Comparación Técnica entre los Programas de Simulación de Sistemas de Potencia DIgSILENT PowerFactory y PSS/E,” Tesis pregrado, Facultad de ingeniería, Escuela Politecnica Nacional, 2015. [En líne], Disponible en: https://bibdigital.epn.edu.ec/handle/15000/10316

L. F. Gaitan, J. D. Gómez, and E. R. Trujillo, “Simulation of a 14 Node IEEE System with Distributed Generation Using Quasi-dynamic Analysis,” in Communications in Computer and Information Science, 2018. pp. 497–508.


L. F. Gaitán-Cubides, J. D. Gómez-Ariza, and E. Rivas-Trujillo, “Análisis cuasi-dinámico de la inclusión de generación distribuida en sistemas eléctricos de potencia, caso de estudio: Sistema IEEE de 30 nodos,” Rev. UIS Ing., vol. 17, no. 2, pp. 41–54, Mar. 2018. https://doi.org/10.18273/revuin.v17n2-2018004

How to Cite
Gaitán , L. F., Gómez , J. D., & Rivas-Trujillo , E. (2019). Quasi-Dynamic Analysis of a Local Distribution System with Distributed Generation. Study Case: The IEEE 13 Node System. TecnoLógicas, 22(46), 195-212. https://doi.org/10.22430/22565337.1489


Download data is not yet available.
Research Papers