Design and Digital Control of an Interleaved Boost Converter for Battery Charge/Discharge

Keywords: Interleaved converter, boost converter, battery, digital control


According to the literature, battery ripple current is one of the phenomena that most significantly affect the state of health of batteries. Therefore, this paper presents a methodology to design a digital control in order to reduce such ripple current, which is injected by means of converters that process the charge and discharge energy. The strategy was designed for and implemented in an interlaced converter. The implemented methodology is presented in four stages: (i) modelling the battery-converter-charge system; (ii) designing the digital control based on the model; (iii) designing the practical implementation, where the instrumentation and implementation stage is presented using an embedded device; and (iv) practical validation of the operation of the strategy and the reduction of battery ripple current. The methodology presented here produced a correct performance of the digital control, fulfilling the design parameters of different operation modes and reducing the ripple current in the battery between 50 and 65%. This reduction protects the battery’s useful life and the sources or loads connected to the system. Additionally, it allows the state-of-charge and health estimation algorithms to increase their accuracy, which leads to an improvement in maintenance protocols and the planning of element replacement. 

Author Biographies

Cristian Escudero Quintero, Instituto Tecnológico Metropolitano, Colombia


Santiago Acevedo Pérez, Instituto Tecnológico Metropolitano, Colombia
Juan Pablo Villegas Ceballos, Instituto Tecnológico Metropolitano, Colombia


Daniel González Montoya*, Instituto Tecnológico Metropolitano, Colombia


Sergio Serna Garcés, Instituto Tecnológico Metropolitano, Colombia



F. Slah; A. Mansour; M. Hajer; B. Faouzi, “Analysis, modeling and implementation of an interleaved boost DC-DC converter for fuel cell used in electric vehicle,” Int. J. Hydrogen Energy, vol. 42, no. 48, pp. 28852–28864, Nov. 2017.

P. Thounthong; S. Raël; B. Davat, “Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications,” J. Power Sources, vol. 193, no. 1, pp. 376–385, Aug. 2009.

S. Bashash; H. K. Fathy, “Transport-Based Load Modeling and Sliding Mode Control of Plug-In Electric Vehicles for Robust Renewable Power Tracking,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 526–534, Mar. 2012.

S. I. Serna-Garcés, “Contributions to the efficiency and safety of stand-alone DC microgrids,” (Tesis Doctoral), Universidad Nacional de Colombia, Manizalez, Colombia, 2018.

J. Li; M. A. Danzer, “Optimal charge control strategies for stationary photovoltaic battery systems,” J. Power Sources, vol. 258, pp. 365–373, Jul. 2014.

M. A. Hannan; F. A. Azidin; A. Mohamed, “Hybrid electric vehicles and their challenges: A review,” Renew. Sustain. Energy Rev., vol. 29, pp. 135–150, Jan. 2014.

C. Pillot, “Battery Market Development for Consumer Electronics, Automotive, and Industrial: Materials Requirements & Trends,” in 5th Israeli Power Sources Conference 2015, Israel, pp. 1–40.

M. R. Palacin; A. de Guibert, “Why do batteries fail?,” Science, vol. 351, no. 6273, pp. 1253292–1253292, Feb. 2016.

O. Erdinc; B. Vural; M. Uzunoglu, “A dynamic lithium-ion battery model considering the effects of temperature and capacity fading,” in 2009 International Conference on Clean Electrical Power, Capri. 2009, pp. 383–386.

X. Liu; S. Qin; Y. He; X. Zheng; C. Cao, “SOC estimation of the lithium-ion battery with the temperature-based Nernst model,” in 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei. 2016, pp. 1419–1422.

C. A. Ramos-Paja; A. J. Saavedra-Montes; J. D. Bastidas-Rodríguez, “Cargador de baterías fotovoltaico con control por modos deslizantes y limitación de la derivada de corriente de carga,” TecnoLógicas, vol. 21, no. 42, pp. 129–145, May. 2018.

M. Uno; K. Tanaka, “Influence of High-Frequency Charge-Discharge Cycling Induced by Cell Voltage Equalizers on the Life Performance of Lithium-Ion Cells,” IEEE Trans. Veh. Technol., vol. 60, no. 4, pp. 1505–1515, May. 2011.

S.-C. Huang; K.-H. Tseng; J.-W. Liang; C.-L. Chang; M. Pecht, “An Online SOC and SOH Estimation Model for Lithium-Ion Batteries,” Energies, vol. 10, no. 4, p. 512, Apr. 2017.

P. A. Topan; M. N. Ramadan; G. Fathoni; A. I. Cahyadi; O. Wahyunggoro, “State of Charge (SOC) and State of Health (SOH) estimation on lithium polymer battery via Kalman filter,” in 2016 2nd International Conference on Science and Technology-Computer (ICST), Yogyakarta. 2016, pp. 93–96.

M.-H. Hung; C.-H. Lin; L.-C. Lee; C.-M. Wang, “State-of-charge and state-of-health estimation for lithium-ion batteries based on dynamic impedance technique,” J. Power Sources, vol. 268, pp. 861–873, Dec. 2014.

H. Rahimi-Eichi; U. Ojha; F. Baronti; M.-Y. Chow, “Battery Management System: An Overview of Its Application in the Smart Grid and Electric Vehicles,” IEEE Ind. Electron. Mag., vol. 7, no. 2, pp. 4–16, Jun. 2013.

S. Serna-Garcés; D. Gonzalez Montoya; C. Ramos-Paja, “Sliding-Mode Control of a Charger/Discharger DC/DC Converter for DC-Bus Regulation in Renewable Power Systems,” Energies, vol. 9, no. 4, p. 245, Mar. 2016.

S. Serna-Garcés; D. González Montoya; C. Ramos-Paja, “Control of a Charger/Discharger DC/DC Converter with Improved Disturbance Rejection for Bus Regulation,” Energies, vol. 11, no. 3, pp. 594, Mar. 2018.

J. P. Villegas Ceballos; S. I. Serna‐Garcés; D. González Montoya; C. A. Ramos-Paja; J. D. Bastidas‐Rodríguez, “Charger/discharger DC/DC converter with interleaved configuration for DC‐bus regulation and battery protection,” Energy Sci. Eng., vol. 8, no. 2, pp. 530–543, Feb. 2020.

M. A. Devi; K. Valarmathi; R. Mahendran, “Ripple current reduction in interleaved boost converter by using advanced PWM techniques,” in 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies, Ramanathapuram. 2014, pp. 115–119.

K. Siri; C. Q. Lee; T.-E. Wu, “Current distribution control for parallel connected converters. I,” IEEE Trans. Aerosp. Electron. Syst., vol. 28, no. 3, pp. 829–840, Jul. 1992.

R. Giral; L. Martinez-Salamero; S. Singer, “Interleaved converters operation based on CMC,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 643–652, Jul. 1999.

D. J. Perreault; J. G. Kassakian, “Distributed interleaving of paralleled power converters,” IEEE Trans. Circuits Syst. I Fundam. Theory Appl., vol. 44, no. 8, pp. 728–734, Aug. 1997.

S. Vijayalakshmi; E. Arthika; G. S. Priya, “Modeling and simulation of interleaved Buck-boost converter with PID controller,” in 2015 IEEE 9th International Conference on Intelligent Systems and Control (ISCO), Coimbatore. 2015, pp. 1–6.

H. M. M. Swamy; K. P. Guruswamy; S. P. Singh, “Design, Modeling and Analysis of Two Level Interleaved Boost Converter,” in 2013 International Conference on Machine Intelligence and Research Advancement, Katra. 2013, pp. 509–514.

M. Habib; F. Khoucha; A. Harrag, “GA-based robust LQR controller for interleaved boost DC–DC converter improving fuel cell voltage regulation,” Electr. Power Syst. Res., vol. 152, pp. 438–456, Nov. 2017.

R. Giral; L. Martinez-Salamero; R. Leyva; J. Maixe, “Sliding-mode control of interleaved boost converters,” IEEE Trans. Circuits Syst. I Fundam. Theory Appl., vol. 47, no. 9, pp. 1330–1339, 2000.

R. W. Erickson; D. Maksimović, Fundamentals of Power Electronics 2nd. ed. . Springer Science & Business Media, 2007.

B. C. Kuo, Automatic control systems. Upper Saddle River, NJ. Prentice Hall PTR, 1987.

T. I. Inc., “ TMS320F2823x Digital Signal Controllers (DSCs),” Dallas, TX, USA, 2016.

I. Rectifier, “IRF3710PbF HEXFET® Power MOSFET,” California, USA, 2010.

Renesas Electronics Corporation, “HIP4081A, 80V High Frequency H-Bridge Driver,” Milpitas, California, Estados Unidos.

A. Device, “High Voltage, Bidirectional Current Shunt Monitor,” Norwood, Massachusetts,USA, 2017.

How to Cite
C. Escudero Quintero, S. Acevedo Pérez, J. P. Villegas Ceballos, D. Daniel, and S. Serna Garcés, “Design and Digital Control of an Interleaved Boost Converter for Battery Charge/Discharge”, TecnoL., vol. 24, no. 50, p. e1556, Jan. 2021.


Download data is not yet available.
Research Papers
Crossref Cited-by logo

More on this topic