Characterization of Electrospun Silk Fibroin Scaffolds for Bone Tissue Engineering: A Review

Keywords: Silk fibroin, electrospinning characterization, bone tissue engineering


Silk Fibroin (SF) is a natural polymer obtained from the Bombyx mori silkworm. It has been used in bone tissue engineering thanks to its favorable biocompatibility, adhesion, low biodegradability, and tensile strength properties. Electrospinning is a technique to develop nanofibers. It uses high voltages to convert polymer solutions into porous nanostructured scaffolds with a good ratio between superficial area and volume. In this paper, we examine the effect of the electrospinning parameters on fiber morphology once the spun fibers have been treated. In addition, we present different physicochemical characterizations of electrospun SF scaffolds such as their morphology (via Scanning Electron Microscopic—SEM—), crystalline structure (via Fourier Transform Infrared—FTIR—spectroscopy and X-Ray Diffraction—XRD—), thermal characteristics (via Differential Scanning Calorimetry—DSC—and Thermogravimetric Analysis—TGA—), and mechanical properties (tensile strength). Finally, we discuss the potential applications and impacts of electrospun SF in bone tissue engineering and future research trends.

Author Biographies

Mónica Liliana Mejía-Suaza*, Instituto Tecnológico Metropolitano, Colombia

MSc in Biomedical Engineering, Faculty of Engineering, Instituto Tecnológico Metropolitano,

Maria Elena Moncada, Instituto Tecnológico Metropolitano, Colombia

PhD in Electrical Engineering, Faculty of Engineering, Instituto Tecnológico Metropolitano,

Claudia Patricia Ossa-Orozco , Universidad de Antioquia, Colombia

PhD in Metallurgical and Materials Engineering, Biomaterials Research Group, Bioengineering Program, Faculty of Engineering, Universidad de Antioquia,


F. Mottaghitalab; H. Hosseinkhani; M. A. Shokrgozar; C. Mao; M. Yang; M. Farokhi, “Silk as a potential candidate for bone tissue engineering,” J. Control. Release, vol. 215, pp. 112–128, Oct. 2015.

M. Farokhi et al., “Silk fibroin/hydroxyapatite composites for bone tissue engineering,” Biotechnol. Adv., vol. 36, no. 1, pp. 68–91, Jan. 2018.

N. Sultana, Biodegradable Polymer Based Scaffolds for Bone Tissue Engineering. Springer, 2013.

L. Li et al., “Functionalized cell-free scaffolds for bone defect repair inspired by self-healing of bone fractures: A review and new perspectives,” Mater. Sci. Eng. C, vol. 98. pp. 1241-1251, May. 2019.

Q. Chen; C. Zhu; G. A. Thouas, “Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites,” Prog. Biomater., vol. 1, no. 1, Sep. 2012.

H. Yi; F. Ur Rehman; C. Zhao; B. Liu; N. He, “Recent advances in nano scaffolds for bone repair,” Bone Res., vol. 4, no. 16050, pp. 1- 11, Dec. 2016.

M. Maksimović, “The roles of nanotechnology and internet of nano things in healthcare transformation,” TecnoLógicas, vol. 20, no. 40, pp. 139–153, Sep. 2017.

Y. Liu; J. Lim; S.-H. Teoh, “Review: Development of clinically relevant scaffolds for vascularised bone tissue engineering,” Biotechnol. Adv., vol. 31, no. 5, pp. 688–705, Sep. 2013.

K. A. Gross; L. M. Rodríguez-Lorenzo, “Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering,” Biomaterials, vol. 25, no. 20, pp. 4955–4962,. Sep. 2004.

V. Olivier; N. Faucheux; P. Hardouin, “Biomaterial challenges and approaches to stem cell use in bone reconstructive surgery,” Drug Discov. Today, vol. 9, no. 18, pp. 803–811, Sep. 2004.

S. Sánchez-Salcedo; A. Nieto; M. Vallet-Regí; “Hydroxyapatite/β-tricalcium hosphate/agarose macroporous scaffolds for bone tissue engineering,” Chem. Eng. J., vol. 137, no. 1, pp. 62–71, Mar. 2008.

M. Wang, Surface Modification of Biomaterials and Tissue Engineering Scaffolds for Enhanced Osteoconductivity, in 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006, vol. 15. Springer, 2007.

J. A. Peres; T. Lamano, “Strategies for stimulation of new bone formation: a critical review,” Braz. Dent. J., vol. 22, no. 6, pp. 443–448, Oct. 2011.

B. F. Ricciardi; M. P. Bostrom, “Bone graft substitutes: Claims and credibility,” Semin. Arthroplasty, vol. 24, no. 2, pp. 119–123, Jun. 2013.

M. N. Rahaman et al., “Bioactive glass in tissue engineering,” Acta Biomater., vol. 7, no. 6, pp. 2355–2373, Jun. 2011.

S. Samavedi; A. R. Whittington; A. S. Goldstein, “Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior,” Acta Biomater., vol. 9, no. 9, pp. 8037–8045, Sep. 2013.

Y. Kang; K. Kim; Y. Seol; S. Rhee, “Evaluations of osteogenic and osteoconductive properties of a non-woven silica gel fabric made by the electrospinning method,” Acta Biomater., vol. 5, no. 1, pp. 462–469, Jan. 2009.

X. Qu et al., “The effect of oxygen plasma pretreatment and incubation in modified simulated body fluids on the formation of bone-like apatite on poly(lactide-co-glycolide) (70/30),” Biomaterials, vol. 28, no. 1, pp. 9–18, Jan. 2007.

X. Fu; M. J. Jenkins; G. Sun; I. Bertoti; H. Dong, “Characterization of active screen plasma modified polyurethane surfaces,” Surf. Coatings Technol., vol. 206, no. 23, pp. 4799–4807, Jul. 2012.

G. Kumar; M. S. Waters; T. M. Farooque; M. F. Young; C. G. Simon, “Freeform fabricated scaffolds with roughened struts that enhance both stem cell proliferation and differentiation by controlling cell shape,” Biomaterials, vol. 33, no. 16, pp. 4022–4030, Jun. 2012.

A. Mata; E. J. Kim; C. A. Boehm; A. J. Fleischman; G. F. Muschler; S. Roy, “A three-dimensional scaffold with precise micro-architecture and surface micro-textures,” Biomaterials, vol. 30, no. 27, pp. 4610–4617, Sep. 2009.

S. F. El-Amin et al., “Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering,” Biomaterials, vol. 24, no. 7, pp. 1213–1221, Mar. 2003.

S. Weeks; A. Kulkarni; H. Smith; C. Whittall; Y. Yang; J. Middleton, “The effects of chemokine, adhesion and extracellular matrix molecules on binding of mesenchymal stromal cells to poly(l-lactic acid),” Cytotherapy, vol. 14, no. 9, pp. 1080–1088, Sep. 2012.

N. Okutan; P. Terzi; F. Altay, “Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers,” Food Hydrocoll., vol. 39, pp. 19–26, Aug. 2014.

S. Fakirov., Nano-size Polymers. Springer, 2016.

B. Sun et al., “Advances in three-dimensional nanofibrous macrostructures via electrospinning,” Prog. Polym. Sci., vol. 39, no. 5, pp. 862–890, May 2014.

S. Y. Park; C. S. Ki; Y. H. Park; H. M. Jung; K. M. Woo; H. J. Kim, “Electrospun Silk Fibroin Scaffolds with Macropores for Bone Regeneration: An In Vitro and In Vivo Study,” Tissue Eng. Part A, vol. 16, no. 4, pp. 1271–1279, Jan. 2010.

E. J. Chong et al., “Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution,” Acta Biomater., vol. 3, no. 3, pp. 321–330, May. 2007.

D. Gaviria Arias; L. C. Caballero Mendez, “Uso de biomateriales a partir de la fibroína de la seda de gusano de seda (Bombyx mori L.) Para procesos de medicina regenerativa basada en ingeniería de tejidos,” Rev. Médica Risaralda, vol. 21, no. 1, pp. 38–47, 2015. Available:

D. Naskar; A. K. Ghosh; M. Manda; P. Das; S. K. Nandi; S. C. Kundu, “Dual growth factor loaded nonmulberry silk fibroin/carbon nanofiber composite 3D scaffolds for in vitro and in vivo bone regeneration,” Biomaterials, vol. 136, pp. 67–85, Aug. 2017.

D. D. Zhang; L. X. Dai, “Preparation and characterization of electrospun poly(vinyl alcohol)/silk fibroin nanofibers as a potential drug delivery system,” Adv. Mater. Res., vol. 709, pp. 215–220, Jun. 2013.

W. L. Li; J. J. Wang; L. X. Dai, “Preparation and Antibacterial Activity of Poly (vinyl Alcohol)/Silk Fibroin Composite Nanofibers Containing Silver Nanoparticles,” Adv. Mater. Res., vol. 175–176, pp. 105–109, 2011.

M. M. Pillai et al., “Silk–PVA Hybrid Nanofibrous Scaffolds for Enhanced Primary Human Meniscal Cell Proliferation,” J. Membr. Biol., vol. 249, no. 6, pp. 813–822, 2016.

J. Jin; Y. Liu; C. Qin; J. Wang; L. Dai; K. Yamaura, “Electrospinning of regenerated silk fibroin and polyvinyl alcohol blended solution,” J. Polym. Eng., vol. 30, no. 3–4, pp. 149–160, 2010.

M. M. Kalani; J. Nourmohammadi; B. Negahdari; A. Rahimi; S. A. Sell, “Electrospun core-sheath poly(vinyl alcohol)/silk fibroin nanofibers with Rosuvastatin release functionality for enhancing osteogenesis of human adipose-derived stem cells,” Mater. Sci. Eng. C, vol. 99, pp. 129–139, Jun. 2019.

H. J. Cho; Y. J. Yoo; J. W. Kim; Y. H. Park; D. G. Bae; I. C. Um, “Effect of molecular weight and storage time on the wet- and electro-spinning of regenerated silk fibroin,” Polym. Degrad. Stab., vol. 97, no. 6, pp. 1060–1066, Jun. 2012.

S. Calamak; E. A. Aksoy; C. Erdogdu; M. Sagıroglu; K. Ulubayram, “Silver nanoparticle containing silk fibroin bionanotextiles,” J. Nanoparticle Res., vol. 17, no. 2, Feb. 2015.

J. Zhu; H. Shao; X. Hu, “Morphology and structure of electrospun mats from regenerated silk fibroin aqueous solutions with adjusting pH,” Int. J. Biol. Macromol., vol. 41, no. 4, pp. 469–474, Oct. 2007.

S. Sukigara; M. Gandhi; J. Ayutsede; M. Micklus; F. Ko, “Regeneration of Bombyx mori silk by electrospinning—part 1: processing parameters and geometric properties,” Polymer., vol. 44, no. 19, pp. 5721–5727, Sep. 2003.

S. Sohn; S. P. Gido, “Wet-Spinning of Osmotically Stressed Silk Fibroin,” Biomacromolecules, vol. 10, no. 8, pp. 2086–2091, Aug. 2009.

F. Zhang et al., “Mechanisms and Control of Silk-Based Electrospinning,” Biomacromolecules, vol. 13, no. 3, pp. 798–804, Feb. 2012.

C. Meechaisue et al., “Preparation of electrospun silk fibroin fiber mats as bone scaffolds: a preliminary study,” Biomed. Mater., vol. 2, no. 3, pp. 181–188, Sep. 2007.

J. Ayutsede; M. Gandhi; S. Sukigara; M. Micklus; H.-E. Chen; F. Ko, “Regeneration of Bombyx mori silk by electrospinning. Part 3: characterization of electrospun nonwoven mat,” Polymer., vol. 46, no. 5, pp. 1625–1634, Feb. 2005.

S. H. Kim; Y. S. Nam; T. S. Lee; W. H. Park, “Silk Fibroin Nanofiber. Electrospinning, Properties, and Structure,” Polym. J., vol. 35, pp. 185–190, Feb. 2003.

J. H. Kim et al., “Preparation and in vivo degradation of controlled biodegradability of electrospun silk fibroin nanofiber mats,” J. Biomed. Mater. Res. Part A, vol. 100A, no. 12, pp. 3287–3295, Dec. 2012.

C. S. Ki et al., “Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration,” Biotechnol. Lett., vol. 30, no. 3, pp. 405–410, Mar. 2008.

N. Haghighipour; Z. Hadisi; J. Nourmohammadi; S. Heidari, “How direct electrospinning in methanol bath affects the physico-chemical and biological properties of silk fibroin nanofibrous scaffolds,” Micro Nano Lett., vol. 11, no. 9, pp. 514–517, Sep. 2016.

K.-H. Kim et al., “Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration,” J. Biotechnol., vol. 120, no. 3, pp. 327–339, Nov. 2005.

N. Panda; A. Bissoyi; K. Pramanik; A. Biswas, “Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties,” Mater. Sci. Eng. C, vol. 48, pp. 521–532, Mar. 2015.

C. Li; C. Vepari; H.-J. Jin; H. J. Kim; D. L. Kaplan, “Electrospun silk-BMP-2 scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 16, pp. 3115–3124, Jun. 2006.

R. R. Jose; R. Elia; M. A. Firpo; D. L. Kaplan; R. A. Peattie, “Seamless, axially aligned, fiber tubes, meshes, microbundles and gradient biomaterial constructs,” J. Mater. Sci. Mater. Med., vol. 23, no. 11, pp. 2679–2695, Nov. 2012.

R. Serôdio et al., “Ultrasound sonication prior to electrospinning tailors silk fibroin/PEO membranes for periodontal regeneration,” Mater. Sci. Eng. C, vol. 98, no. 2018, pp. 969–981, May. 2019.

Y. Kishimoto; H. Morikawa; S. Yamanaka; Y. Tamada, “Electrospinning of silk fibroin from all aqueous solution at low concentration,” Mater. Sci. Eng. C, vol. 73, pp. 498–506, Apr. 2017.

C. Li; H.-J. Jin; G. D. Botsaris; D. L. Kaplan, “Silk apatite composites from electrospun fibers,” J. Mater. Res., vol. 20, no. 12, pp. 3374–3384, Dec. 2005.

J. Song et al., “Electrospun Nanofibrous Silk Fibroin Membranes Containing Gelatin Nanospheres for Controlled Delivery of Biomolecules,” Adv. Healthc. Mater., vol. 6, no. 14, p. 1700014, Jul. 2017.

M. Gandhi; H. Yang; L. Shor; F. Ko, “Post-spinning modification of electrospun nanofiber nanocomposite from Bombyx mori silk and carbon nanotubes,” Polymer., vol. 50, no. 8, pp. 1918–1924, Apr. 2009.

M. Gholipourmalekabadi et al., “Optimization of nanofibrous silk fibroin scaffold as a delivery system for bone marrow adherent cells: in vitro and in vivo studies,” Biotechnol. Appl. Biochem., vol. 62, no. 6, pp. 785–794, Nov. 2015.

K. Ohgo; C. Zhao; M. Kobayashi; T. Asakura, “Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method,” Polymer., vol. 44, no. 3, pp. 841–846, Jan. 2003.

C. M. Srivastava; R. Purwar; A. P. Gupta, “Enhanced potential of biomimetic, silver nanoparticles functionalized Antheraea mylitta (tasar) silk fibroin nanofibrous mats for skin tissue engineering,” Int. J. Biol. Macromol., vol. 130, pp. 437–453, Jun. 2019.

B. Niu; B. Li; Y. Gu; X. Shen; Y. Liu; L. Chen, “In vitro evaluation of electrospun silk fibroin/nano-hydroxyapatite/BMP-2 scaffolds for bone regeneration,” J. Biomater. Sci. Polym. Ed., vol. 28, no. 3, pp. 257–270, Feb. 2017.

Z. Hadisi; J. Nourmohammadi; J. Mohammadi, “Composite of porous starch-silk fibroin nanofiber-calcium phosphate for bone regeneration,” Ceram. Int., vol. 41, no. 9, pp. 10745–10754, Nov. 2015.

K. Wei et al., “Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their effects in osteoblastic behavior,” J. Biomed. Mater. Res. Part A, vol. 97A, no. 3, pp. 272–280, Jun. 2011.

H. Ding et al., “Establishment of 3D culture and induction of osteogenic differentiation of pre-osteoblasts using wet-collected aligned scaffolds,” Mater. Sci. Eng. C, vol. 71, pp. 222–230, Feb. 2017.

G. Griffanti; M. James-Bhasin; I. Donelli; G. Freddi; S. N. Nazhat, “Functionalization of silk fibroin through anionic fibroin derived polypeptides,” Biomed. Mater., vol. 14, no. 1, Nov. 2018. Available:

S. Çalamak; C. Erdoğdu; M. Özalp; K. Ulubayram, “Silk fibroin based antibacterial bionanotextiles as wound dressing materials,” Mater. Sci. Eng. C, vol. 43, pp. 11–20, Oct. 2014.

R. Liu; J. Ming; H. Zhang; B. Zuo, “EDC/NHS crosslinked electrospun regenerated tussah silk fibroin nanofiber mats,” Fibers Polym., vol. 13, no. 5, pp. 613–617, May 2012.

S. Mohammadzadehmoghadam; Y. Dong, “Fabrication and Characterization of Electrospun Silk Fibroin/Gelatin Scaffolds Crosslinked With Glutaraldehyde Vapor,” Front. Mater., vol. 6, no. 91, May, pp. 1–12, May. 2019.

A. Gaviria; S. Sanchez-Diaz; A. Ríos; M. S. Peresin; A. Restrepo-Osorio, “Silk fibroin from silk fibrous waste: characterization and electrospinning,” IOP Conf. Ser. Mater. Sci. Eng., vol. 254, no. 10, p. 102005, Oct. 2017.

J. Zhou; C. Cao; X. Ma, “A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning,” Int. J. Biol. Macromol., vol. 45, no. 5, pp. 504–510, Dec. 2009.

M. Andiyappan; S. Sundaramoorthy; P. Vidyasekar; N. T. Srinivasan; R. S. Verma, “Characterization of electrospun fibrous scaffold produced from Indian eri silk fibroin,” Int. J. Mater. Res., vol. 104, no. 5, pp. 498–506, May. 2013.

I. C. Um; C. S. Ki; H. Kweon; K. G. Lee; D. W. Ihm; Y. H. Park, “Wet spinning of silk polymer: II. Effect of drawing on the structural characteristics and properties of filament,” Int. J. Biol. Macromol., vol. 34, no. 1–2, pp. 107–119, Apr. 2004.

J. S. Ko; K. H. Lee; D. G. Bae; I. C. Um, “Miscibility, structural characteristics, and thermal behavior of wet spun regenerated silk fibroin/nylon 6 blend filaments,” Fibers Polym., vol. 11, no. 1, pp. 14–20, Feb. 2010.

M. Buitrago-Vásquez; C. P. Ossa-Orozco, “Degradation, water uptake, injectability and mechanical strength of injectable bone substitutes composed of silk fibroin and hydroxyapatite nanorods,” Rev. Fac. Ing., vol. 27, no. 48, pp. 49–60, 2018.

J. Ming; B. Zuo, “A novel electrospun silk fibroin/hydroxyapatite hybrid nanofibers,” Mater. Chem. Phys., vol. 137, no. 1, pp. 421–427, Nov. 2012.

J.-P. Chen; S.-H. Chen; G.-J. Lai, “Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture,” Nanoscale Res. Lett., vol. 7, no. 1, p. 170, Dec. 2012.

Y. Yang; X. Ding; T. Zou; G. Peng; H. Liu; Y. Fan, “Preparation and characterization of electrospun graphene/silk fibroin conductive fibrous scaffolds,” RSC Adv., vol. 7, no. 13, pp. 7954–7963, 2017.

F. A. Sheikh et al., “A novel approach to fabricate silk nanofibers containing hydroxyapatite nanoparticles using a three-way stopcock connector,” Nanoscale Res. Lett., vol. 8, no. 1, p. 303, Dec. 2013.

H. Nalvuran; A. E. Elçin; Y. M. Elçin, “Nanofibrous silk fibroin/reduced graphene oxide scaffolds for tissue engineering and cell culture applications,” Int. J. Biol. Macromol., vol. 114, pp. 77–84, Jul. 2018.

N. Panda; A. Bissoyi; K. Pramanik; A. Biswas, “Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri–tasar silk fibroin nanofibrous scaffold,” J. Biomater. Sci. Polym. Ed., vol. 25, no. 13, pp. 1440–1457, Sep. 2014.

M. Buitrago Vásquez, “Degradación, absorción, inyectabilidad y resistencia mecánica de sustitutos óseos inyectables compuestos de fibroína y nanobarras de hidroxiapatita,” Rev. Fac. ing. vol. 27, no. 48, pp.49-60 2017.

M. Andiappan et al., “Electrospun eri silk fibroin scaffold coated with hydroxyapatite for bone tissue engineering applications,” Prog. Biomater., vol. 2, no. 1, p. 6, 2013.

S. Calamak; E. A. Aksoy; N. Ertas; C. Erdogdu; M. Sagıroglu; K. Ulubayram, “Ag/silk fibroin nanofibers: Effect of fibroin morphology on Ag+ release and antibacterial activity,” Eur. Polym. J., vol. 67, pp. 99–112, Jun. 2015.

N. N. Panda; A. Biswas; K. Pramanik; S. Jonnalagadda, “Enhanced osteogenic potential of human mesenchymal stem cells on electrospun nanofibrous scaffolds prepared from eri-tasar silk fibroin,” J. Biomed. Mater. Res. Part B Appl. Biomater., vol. 103, no. 5, pp. 971–982, Jul. 2015.

H. JoonJin; J. Chen; V. Karageorgiou; G. H. Altman; D. L. Kaplan, “Human bone marrow stromal cell responses on electrospun silk fibroin mats,” Biomaterials, vol. 25, no. 6, pp. 1039–1047, Mar. 2004.

H. Kim; L. Che; Y. Ha; W. Ryu, “Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles,” Mater. Sci. Eng. C, vol. 40, pp. 324–335, Jul. 2014.

M. Kang; P. Chen; H.-J. Jin, “Preparation of multiwalled carbon nanotubes incorporated silk fibroin nanofibers by electrospinning,” Curr. Appl. Phys., vol. 9, no. 1, pp. S95–S97, Jan. 2009.

V. Karageorgiou; D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27, pp. 5474–5491, Sep. 2005.

How to Cite
Mejía Suaza, M. L., Moncada, M. E., & Ossa-Orozco , C. P. (2020). Characterization of Electrospun Silk Fibroin Scaffolds for Bone Tissue Engineering: A Review. TecnoLógicas, 23(49), 33-51.


Download data is not yet available.
Review Article