Simulation of a Rectangular Spiral Microstrip Multiband Antenna for Radio Frequency Energy Harvest

Keywords: Microstrip antenna, microstrip slots, radiation pattern, resonance frequency


This study analyses the influence of variations in the thickness of the dielectric substrate and the position of the microstrip slots created in the radiating patch of a microstrip antenna. Automatic optimization software, i.e., CST Studio, was used to simulate an antenna for radio frequency energy harvesting made of ARLON AD450 substrate with a dielectric constant of 4.5, tangential losses of 0.035 and a thickness of 3 mm. In this design, several slots were applied to form a square loop. The results show that, by increasing the thickness of the substrate that separates the ground plane from the radiating patch, the return loss of the parameter was reduced, and, at the same time, the antenna gain rose. Cutting out slots, as well as their thickness and location in the radiating patch, produced a shift in the antenna’s resonant frequency. Likewise, the array presented here allowed resonant frequencies around 1.6 GHz, 2.38 GHz, 3.38 GHz, and 4.16 GHz, with a gain between 2.48 dB and 7.66 dB. This antenna design produced improvements in gain and radiation pattern. Creating slots in the radiating patch modified the surface current distribution of the antenna and generated new resonant frequencies. The air gaps produced between the copper and the substrate improved the antenna’s performance. Similarly, the spaces created by the substrate between the ground plane and the radiating patch decreased the gain losses in the antenna due to the reduction of the copper caused when the slots were made. The proposed antenna presented a multiband behavior immediately after the slots were added to the patch. Evaluating substrates and structures is useful for developing integrated microstrip antennas for RF energy harvesting systems.

Author Biographies

Edison Andrés Zapata-Ochoa*,  Instituto Tecnológico Metropolitano, Colombia

 Instituto Tecnológico Metropolitano, Medellín-Colombia,

Francisco López-Giraldo, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia,

Germán David Goéz, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia,


H. F. Bermúdez-Orozco; E. Astaiza-Hoyos; L. F. Muñoz-Sanabria, “Cambios del patrón de radiación en arreglos lineales de dipolos de microcinta a 2,4 GHz en presencia de elementos parásitos,” TecnoLógicas, vol. 18, no. 35, pp. 21-34, Aug. 2015.

J. Chen; K. Fai Tong; A. Al-Armaghany; J. Wang, “A Dual-Band Dual-Polarization Slot Patch Antenna for GPS and Wi-Fi Applications,” IEEE Antennas Wirel. Propag. Lett., vol. 15, pp. 406–409, Jun. 2015.

H. Elsadek; D. M. Nashaat, “Multiband and UWB V-shaped antenna configuration for wireless communications applications,” IEEE Antennas Wirel. Propag. Lett., vol. 7, pp. 89–91, May. 2008.

S. Liu; W. Wu; D. Gang Fang, “Single-Feed Dual-Layer Dual-Band E-Shaped and U-Slot Patch Antenna for Wireless Communication Application,” IEEE Antennas Wirel. Propag. Lett., vol. 15, no. 2, pp. 468–471, Jul. 2015.

M. Rostamzadeh; S. Mohamadi; J. Nourinia; Ch. Ghobadi; M. Ojaroudi, “Square monopole antenna for UWB applications with novel rod-shaped parasitic structures and novel V-shaped slots in the ground plane,” IEEE Antennas Wirel. Propag. Lett., vol. 11, pp. 446–449, Apr. 2012.

N. M. Awad; M. K. Abdelazeez, “Multislot microstrip antenna for ultra-wide band applications,” J. King Saud Univ. Sci., vol. 30, no. 1, pp. 38–45, Jan. 2018.

S. Weigand; G. H. Huff; K. H. Pan; J. T. Bernhard, “Analysis and design of broad-band single-layer rectangular U-slot microstrip patch antennas,” IEEE Trans. Antennas Propag., vol. 51, no. 3, pp. 457–468, May. 2003.

M. Joler; J. Kucan, “Impact of Slot Parameters on the Three Resonant Frequencies of a Rectangular Microstrip Antenna: Study of the impact of the slot length, width, and position,” IEEE Antennas Propag. Mag., vol. 57, no. 4, pp. 48–63, Aug. 2015.

S. Chhawchharia; S. Kumar Sahoo; M. Balamurugan; S. Sukchai; F. Yanine, “Investigation of wireless power transfer applications with a focus on renewable energy,” Renew. Sustain. Energy Rev., vol. 91, pp. 888–902, Aug. 2018.

T. Benyetho; J. Zbitou; L. El Abdellaoui; H. Bennis; A. Tribak, “A New Fractal Multiband Antenna for Wireless Power Transmission Applications,” Act. Passiv. Electron. Components, vol. 2018, pp. 1–10, Mar. 2018.

H. Joon Kim; H. Hirayama; S. Kim; K. Jin Han; R. Zhang; J. Woong Choi, “Review of Near-Field Wireless Power and Communication for Biomedical Applications,” IEEE Access, vol. 5, pp. 21264–21285, Sep. 2017.

R. Hussein; H. A. Atallah; S. Hekal; A. B. Abdel-Rahman, “A new design for compact size wireless power transfer applications using spiral defected ground structures,” Radioengineering, vol. 27, no. 4, pp. 1032–1037, 2018.

L. G. Tran; H. K. Cha;W. T. Park, “RF power harvesting: a review on designing methodologies and applications,” Micro Nano Syst. Lett., vol. 5, Feb. 2017.

H. S. Deshpande; K. J. Karande, “A planar microstrip RF energy harvester 3D cube antenna for multiple frequencies reception,” in Conference on Advances in Signal Processing, CASP 2016, Pune, 2016, pp. 327–331.

T. A. Elwi, “Novel UWB printed metamaterial microstrip antenna based organic substrates for RF-energy harvesting applications,” AEU - Int. J. Electron. Commun., vol. 101, pp. 44–53, Mar. 2019.

N. Shariati; W. S. T. Rowe; K. Ghorbani, “Highly sensitive rectifier for efficient RF energy harvesting,” 2014 44th European Microwave Conference, Rome, 2014, pp. 1190–1193.

J. M. Barcak; H. P. Partal, “Efficient RF energy harvesting by using multiband microstrip antenna arrays with multistage rectifiers,” in 2012 IEEE Subthreshold Microelectronics Conference, SubVT, Waltham, 2012.

Y. Zhou; C. Huerta; J. Hinojosa, “Three-band ambient wireless energy harvesting system,”2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, 2016, pp. 613-614.

Z. Popovic et al., “Scalable RF energy harvesting,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 4, pp. 1046–1056, Feb. 2014.

L. L. Pon; S. K. Abdul Rahim; C. Yen Leow; M. Himdi; M. Khalily, “Displacement-tolerant printed spiral resonator with capacitive compensated-plates for non-radiative wireless energy transfer,” IEEE Access, vol. 7, pp. 10037–10044, Jan. 2019.

A. Rajagopalan; A. K. Ramrakhyani; D. Schurig; G. Lazzi, “Improving power transfer efficiency of a short-range telemetry system using compact metamaterials,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 4, pp. 947–955, Feb. 2014.

J. Zhang; X. Yuan; C. Wang; Y. He, “Comparative Analysis of Two-Coil and Three-Coil Structures for Wireless Power Transfer,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 341–352, Feb. 2016.

M. Fantuzzi; D. Masotti; A. Costanzo, “A Novel Integrated UWB-UHF One-Port Antenna for Localization and Energy Harvesting,” IEEE Trans. Antennas Propag., vol. 63, no. 9, pp. 3839–3848, Jul. 2015.

E. Gómez Rodríguez; I. Rodríguez Prieto; F. Marante Rizo; L. Rizo Salas, “Estudio de la variación de diferentes parámetros en antenas de microcinta AAPC,” Ing. Electrónica, Automática y Comun., vol. 34, no. 1, pp. 27–39, Jan. 2013.

M. Kumar Khandelwal; B. Kumar Kanaujia; S. Kumar, “Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends,” International Journal of Antennas and Propagation, vol. 2017, Feb. 2017.

N. Singh; B. K. Kanaujia; M. T. Beg; Mainuddin; T. Khan; S. Kumar, “A dual polarized multiband rectenna for RF energy harvesting,” AEU - Int. J. Electron. Commun., vol. 93, pp. 123–131, Sep. 2018.

A. Benayad; M. Tellache, “A compact energy harvesting multiband rectenna based on metamaterial complementary split ring resonator antenna and modified hybrid junction ring rectifier,” Int. J. RF Microw. Comput. Eng., vol. 30, no. 2, pp. 1–11, Feb. 2020.

A. E. Hidalgo; F. M. Rizo, “Microstrip antenna with metamaterial hybrid structure for 2.4 GHz,” Ingeniare, vol. 27, no. 1, pp. 22–33, Mar. 2019.

A. A. Deshmukh; K. P. Ray, “Formulation of resonance frequencies for dual-band slotted rectangular microstrip antennas,” IEEE Antennas Propag. Mag., vol. 54, no. 4, pp. 78–97, Sep. 2012.

J. Balcells; Y. Damgaci; B. A. Cetiner; J. Romeu; L. Jofre, “Polarization reconfigurable MEMS-CPW antenna for mm-wave applications,” EuCAP 2010 - 4th Eur. Conf. Antennas Propag., Barcelona, 2010. pp. 1-856.

F. Sarrazin; S. Pflaum; C. Delaveaud, “Radiation Efficiency Improvement of a Balanced Miniature IFA-Inspired Circular Antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 1309–1312, Nov. 2016.

B. Rao Perli; A. Maheswara Rao, “Analysis of microstrip patch antenna with loading slot using characteristic modes,” 2020 7th Int. Conf. Smart Struct. Syst. ICSSS, Chennai, 2020, pp. 2–5.

S. Á. Jaramillo-Flórez, “Filtros a Frecuencias de Microondas con Doble Resonador en Anillo Elípticos Confocales,” TecnoLógicas, p. 517- 528, Nov. 2013.

M. Moubadir; I. Badaoui; N. A. Touhami; M. Aghoutane; M. El Ouahabi, “A new circular polarization dual feed microstrip square patch antenna using branch coupler feeds for WLAN/HIPERLAN applications,” Procedia Manufacturing, vol. 32, pp. 702–709, 2019.

C. Wnng; K.Chang, “A novel CP patch antenna with a simple feed structure,” IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C, Salt Lake City, 2002, pp. 1000–1003.

T. Kingsuwannaphong; V. Sittakul, “Compact circularly polarized inset-fed circular microstrip antenna for 5 GHz band,” Comput. Electr. Eng., vol. 65, pp. 554–563, Jan. 2018.

How to Cite
E. A. Zapata-Ochoa, F. López-Giraldo, and G. D. Goéz, “Simulation of a Rectangular Spiral Microstrip Multiband Antenna for Radio Frequency Energy Harvest”, TecnoL., vol. 24, no. 51, p. e1924, Jul. 2021.


Download data is not yet available.
Research Papers
Crossref Cited-by logo

More on this topic