Advances in Research into Encapsulation through Ionic Gelation: A Systematic Review

Keywords: Sodium alginate, bioactive compounds, ionic gelation, wall material

Abstract

Encapsulation, a technology that creates a barrier between a compound of interest and the environment, improves the physicochemical stability of products during processing and/or storage. Therefore, it helps to reduce the degradation of compounds of interest, masks undesirable odors and flavors, controls the release of the bioactive compound, and can increase its bioaccessibility and bioavailability. The objective of this review was to collect and discuss recent scientific literature about encapsulation by ionic gelation of bioactive compounds, microorganisms, and enzymes, as well as its use in different applications of scientific and/or industrial interest in several fields. A literature review was carried out in indexed databases using descriptors such as capsule size, encapsulation efficiency, mixture matrices, sodium alginate, and ionic gelation. The results show that using of this kind of encapsulation offers variable advantages regarding the bioavailability of bioactive compounds, the stability of different compounds, the improvement of physical characteristics, the release of compounds, and the protection against adverse environmental effects. In conclusion, the ionic gelation method can have a wide range of applications to encapsulate food ingredients, microorganisms, drugs, etc. This review can guide further research into ionic gelation because it examines the diversity of its applications.

Author Biographies

Nallely Ortiz-Romero, Tecnológico Nacional de México/I T de Durango, México

Tecnológico Nacional de México/I T de Durango, Durango-México, 11040768@itdurango.edu.mx

Luz Araceli Ochoa-Martínez*, Tecnológico Nacional de México/I T de Durango, México

 Tecnológico Nacional de México/I T de Durango, Durango-México, aochoa@itdurango.edu.mx

Silvia Marina González-Herrera, Tecnológico Nacional de México/I T de Durango, México

Tecnológico Nacional de México/I T de Durango, Durango-México, sgonzalez@itdurango.edu.mx

Olga Miriam Rutiaga-Quiñones , Tecnológico Nacional de México/I T de Durango, México

Tecnológico Nacional de México/I T de Durango, Durango-México, omrutiaga@itdurango.edu.mx

José Alberto Gallegos-Infante, Tecnológico Nacional de México/I T de Durango, México

Tecnológico Nacional de México/I T de Durango, Durango-México, jgallegos@itdurango.edu.mx

References

F. Donsi; M. Annunziata; M. Sessa; G. Ferrari, “Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods,” LWT - Food Sci. Technol., vol. 44, no.9, pp. 1908–1914, Nov. 2011. https://doi.org/10.1016/j.lwt.2011.03.003

A. Khezerlou; S. M. Jafari, “13- Nanoencapsulated bioactive components for active food packaging,” in Handbook of Food Nanotechnology, Applications and Approaches, pp. 493–532, 2020. https://doi.org/10.1016/B978-0-12-815866-1.00013-3

J. Gámez-Villazana, “Avances en la determinación de compuestos bioactivos en alimentos,” Cienc. Tecnol. Agrollania, vol. 19, pp. 7–17, Jun. 2020. http://revistas.unellez.edu.ve/index.php/agrollania/article/view/960

P. S. Anbinder; L. Deladino; A. S. Navarro; J. I. Amalvy; M. N. Martino, “Yerba Mate Extract Encapsulation with Alginate and Chitosan Systems: Interactions between Active Compound Encapsulation Polymers,” J. Encapsulation Adsorpt. Sci., vol. 1, no. 4, pp. 80–87, Dec. 2011. http://dx.doi.org/10.4236/jeas.2011.14011

H. Pérez-Leonard; G. Bueno García; M. A. Brizuela Herrada; K. Tortoló Cabañas; C. Gastón Peña, “Microencapsulación: una vía de protección para microorganismos probióticos,” ICIDCA. Sobre los Deriv. la caña azùcar, vol. 47, no. 1, pp. 14–25, Jan. 2013. https://www.redalyc.org/articulo.oa?id=223126409003

J. F. Castañón-Rodríguez; M. G. Soto-Gómez; R. M. Uresti-Marín, “Evaluación de la estabilidad de cápsulas de jugo de naranja obtenidas mediante gelificación iónica,” CienciaUAT., vol. 14, no. 2, pp. 117–132, Jan. 2020. https://doi.org/10.29059/cienciauat.v14i2.1285

P. Patil; D. Chavanke; M. Wagh, “A review on ionotropic gelation method: Novel approach for controlled gastroretentive gelispheres,” Int. J. Pharm. Pharm. Sci., vol. 4, 2012. https://www.semanticscholar.org/paper/A-REVIEW-ON-IONOTROPIC-GELATION-METHOD%3A-NOVEL-FOR-Patil-Chavanke/bf361cd02c8d8cf50db5bd3f3580eddb7d821f61

J. S. Patil; M. V. Kamalapur; S. C. Marapur; D. V. Kadam, “Ionotropic gelation and polyelectrolyte complexation: The novel techniques to design hydrogel particulate susteined, modulated drug delivery system: A review,” Dig. J. Nanomater. Biostructures, vol. 5, no. 1, pp. 241–248, Mar. 2010. https://chalcogen.ro/241_Patil.pdf

M. E. Ramírez Ortíz, Propiedades funcionales de hoy, Barcelona: Omnia Science, 2017. http://dx.doi.org/10.3926/oms.361

N. Thi Thanh Uyen; Z. Ain Abdul Hamid; N. Xuan Thanh Tram; N. Ahmad, “Fabrication of alginate microspheres for drug delivery: a review,” Int. J. Biol. Macromol., vol. 153, pp. 1035–1046, Jun. 2020. https://doi.org/10.1016/j.ijbiomac.2019.10.233

S. H. Ching; N. Bansal; B. Bhandari, “Alginate gel particles–A review of production techniques and physical properties,” Crit. Rev. Food Sci. Nutr., vol. 57, no. 6, pp. 1133–1152, Feb. 2017. https://doi.org/10.1080/10408398.2014.965773

Q. Liu; A. M. Rauth; X. Yu Wu, “Immobilization and bioactivity of glucose oxidase in hydrogel microspheres formulated by an emulsification – internal gelation – adsorption – polyelectrolyte coating method,” Int. J. Pharm., vol. 339, no. 1- 2, pp. 148–156, Jul. 2007. https://doi.org/10.1016/j.ijpharm.2007.02.027

T. Helgerud; O. Gåserød; T. Fjæreide; P. O. Andersen; C. K. Larsen, “Alginates,” in Food stabilizers, thickeners and gelling agents, A. Imeson, Ed. Oxford: United Kingdom: WileyBlackwell., 2010, pp. 50–72. https://doi.org/10.1002/9781444314724.ch4

S. C. S. R. De Moura; C. L. Berling; S. P. M. Germer; I. D. Alvim; M. D. Hubinger, “Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: Pigment stability during storage of microparticles,” Food Chem., vol. 241, pp. 317–327, Feb. 2018 https://doi.org/10.1016/j.foodchem.2017.08.095

E. S. Kim; J. Lee; H. G. Lee, “Calcium-alginate microparticles for sustained release of catechin prepared via an emulsion gelation technique,” Food Sci. Biotechnol., vol. 25, no. 5, pp. 1337–1343, Oct. 2016. https://doi.org/10.1007/s10068-016-0210-8

N. Colak et al., “Bog bilberry phenolics, antioxidant capacity and nutrient profile,” Food Chem., vol. 201, pp. 339–349, Jun. 2016. https://doi.org/10.1016/j.foodchem.2016.01.062

H. Yukio Kawaguti; H. Harumi Sato, “Produção de isomaltulose, um substituto da sacarose, utilizando glicosiltransferase microbiana, Isomaltulose production, a new sucrose substitute, using microbial glucosyl transferase,” Quim. Nov., vol. 31, no. 1, pp. 134–143, 2008. https://doi.org/10.1590/S0100-40422008000100025

R. Ji et al., “Extending Viability of Bifidobacterium longum in Chitosan-Coated Alginate Microcapsules Using Emulsification and Internal Gelation Encapsulation Technology,” Front. Microbiol., vol. 10, pp. 1–10, Jun. 2019. https://dx.doi.org/10.3389%2Ffmicb.2019.01389

C. Narin; U. Ertugrul; O. Tas; S. Sahin; M. H. Oztop, “Encapsulation of pea protein in an alginate matrix by cold set gelation method and use of the capsules in fruit juices,” J. Food Sci., vol. 85, no. 10, pp. 3423–3431, Oct. 2020. https://doi.org/10.1111/1750-3841.15433

L. M. Cáceres; G. A. Velasco; E. P. Dagnino; E. R. Chamorrro, “Microencapsulación de Aceite de Pomelo con Alginato de Sodio por Gelificación y Extrusión Iónica: Optimización y Modelado de la Reticulación y Estudio de la Cinética de Liberación Controlada,” Rev. Tecnol. y Cienc., no. 39, pp. 41–61, Dec. 2020. http://dx.doi.org/10.33414/rtyc.39.41-61.2020

A. Tasch Holkem et al., “Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation,” Food Sci. Technol., vol. 76, part B, pp. 216–221, Mar. 2017. https://doi.org/10.1016/j.lwt.2016.07.013

R. E. González Cuello; J. Pérez Mendoza; L. B. Morón Alcázar, “Efecto de la Microencapsulación sobre la Viabilidad de Lactobacillus delbrueckii sometido a Jugos Gástricos Simulados,” Inf. Tecnológica, vol. 26, no. 5, pp. 11–16, 2015. http://dx.doi.org/10.4067/S0718-07642015000500003

R. Zhang et al., “Microencapsulation of anthocyanins extracted from grape skin by emulsification/ internal gelation followed by spray/freeze-drying techniques: Characterization, stability and bioaccessibility,” LWT - Food Sci. Technol., vol. 123, Apr. 2020. https://doi.org/10.1016/j.lwt.2020.109097

S. Mokhtari; S. Mahdi Jafari; E. Assadpour, “Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate,” Food Chem., vol. 229, pp. 286–295, Aug. 2017. https://doi.org/10.1016/j.foodchem.2017.02.071

S. R. Kanatt; S. Tari; S. P. Chawla, “Encapsulation of extract prepared from irradiated onion scales in alginate beads: a potential functional food ingredient,” J. Food Meas. Charact., vol. 12, pp. 848–858, Dec 2017. https://doi.org/10.1007/s11694-017-9699-7

O. Aizpurua-Olaizola; P. Navarro; A. Vallejo; M. Olivares; N. Etxebarria; A. Usobiaga, “Microencapsulation and storage stability of polyphenols from Vitis vinifera grape wastes,” Food Chem., vol. 190, pp. 614–621, Jan. 2016. https://doi.org/10.1016/j.foodchem.2015.05.117

A. Moschona; M. Liakopoulou-Kyriakides, “Encapsulation of biological active phenolic compounds extracted from wine wastes in alginate-chitosan microbeads,” J. Microencapsul., vol. 35, no. 3, pp. 229–240, Apr. 2018. https://doi.org/10.1080/02652048.2018.1462415

G. C. Raddatz et al., “Influence of the prebiotics hi-maize, inulin and rice bran on the viability of pectin microparticles containing Lactobacillus acidophilus LA-5 obtained by internal gelation/emulsification,” Powder Technol., vol. 362, pp. 409–415, Feb. 2020. https://doi.org/10.1016/j.powtec.2019.11.114

D. Rajmohan; D. Bellmer, “Characterization of Spirulina-Alginate Beads Formed Using Ionic Gelation,” Int. J. Food Sci., vol. 2019, Apr. 2019. https://doi.org/10.1155/2019/7101279

A. Belščak-cvitanović et al., “Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and ß-carotene by ionotropic gelation of alginate and pectin,” Food Hydrocoll., vol. 57, pp. 139–152, Jun. 2016. https://doi.org/10.1016/j.foodhyd.2016.01.020

B. Lupo; A. Maestro; J. M. Gutiérrez; C. González, “Characterization of alginate beads with encapsulated cocoa extract to prepare functional food: Comparison of two gelation mechanisms,” Food Hydrocoll., vol. 49, pp. 25–34, Jul. 2015. https://doi.org/10.1016/j.foodhyd.2015.02.023

C. de J. Hernández-Torres et al., “La microencapsulación de bioactivos para su aplicación en la industria” ICIDCA sobre los Derivados de la Caña de Azúcar, vol. 50, no. 1, pp. 12–19, Jan. 2016. https://www.redalyc.org/pdf/2231/223148420003.pdf

S. Galus; A. Lenart, “Development and characterization of composite edible films based on sodium alginate and pectin,” J. Food Eng., vol. 115, no. 4, pp. 459–465, Apr. 2013. https://doi.org/10.1016/j.jfoodeng.2012.03.006

S. Sharma; P. Sanpui; A. Chattopadhyay; S. Sankar, “Fabrication of antibacterial silver nanoparticle—sodium alginate–chitosan composite films,” RSC Adv., vol. 2, no. 13, pp. 5837–5843, Apr. 2012. https://doi.org/10.1039/C2RA00006G

D. L. Arvizu-Higuera; G. Hernández-Carmona; E. Rodríguez-Montesinos, “Parámetros que afectan la conversión del ácido algínico en alginato de sodio,” Ciencias Mar., vol. 28, no. 1, Mar. 2002. https://www.redalyc.org/pdf/480/48028103.pdf

R. E. J. Forster et al., “Characterisation of physico-mechanical properties and degradation potential of calcium alginate beads for use in embolisation,” Journal of Materials Science: Materials in Medicine, vol. 21, no. 7, pp. 2243–2251, Apr. 2010. https://doi.org/10.1007/s10856-010-4080-y

R. Gheorghita Puscaselu; A. Lobiuc; M. Dimian; M. Covasa, “Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders,” Polymers (Basel)., vol. 12, no. 10, Oct. 2020. https://dx.doi.org/10.3390%2Fpolym12102417

N. Saad Elbialy; N. Mohamed, “Alginate-coated caseinate nanoparticles for doxorubicin delivery: Preparation, characterisation, and in vivo assessment,” Int. J. Biol. Macromol., vol. 154, pp. 114–122, Jul. 2020. https://doi.org/10.1016/j.ijbiomac.2020.03.027

H. Thai et al., “Characterization of chitosan/alginate/lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo,” Sci. Rep., vol. 10, no. 909, Jan. 2020. https://doi.org/10.1038/s41598-020-57666-8

B. Niu et al., “In vitro and in vivo release of diclofenac sodium-loaded sodium aginate/carboxymethyl chitosan- ZnO hydrogel beads,” Int. J. Biol. Macromol., vol. 141, pp. 1191–1198, Dec. 2019. https://doi.org/10.1016/j.ijbiomac.2019.09.059

J. Sun; J. Liu; Y. Liu; Z. Li; J. Nan, “Optimization of Entrapping Conditions of Nitrifying Bacteria and Selection of Entrapping Agent,” Procedia Environ. Sci., vol. 8, pp. 166–172, 2011. https://doi.org/10.1016/j.proenv.2011.10.027

P. Sriamornsak; S. Sungthongjeen; S. Puttipipatkhachorn, “Use of pectin as a carrier for intragastric floating drug delivery: Carbonate salt contained beads,” Carbohydr. Polym., vol. 67, no. 3, pp. 436–445, Feb. 2007. https://doi.org/10.1016/j.carbpol.2006.06.013

V. K. Thakur; A. S. Singha, “Physicochemical and Mechanical Behavior of Cellulosic Pine Needle-Based Biocomposites,” Int. J. Polym. Anal. Charact., vol. 16, no. 6, pp. 390–398, Aug. 2011. https://doi.org/10.1080/1023666X.2011.596303

A. Menin et al., “Effects of microencapsulation by ionic gelation on the oxidative stability of flaxseed oil,” Food Chem., vol. 269, pp. 293–299, Dec. 2018. https://doi.org/10.1016/j.foodchem.2018.06.144

M. Lascol; S. Bourgeois; C. Barratier; P. Marote; P. Lanteri; C. Bordes, “Development of Pectin Microparticles By Using Ionotropic Gelation With Chlorhexidine As Cross-Linking Agent,” Int. J. Pharm., vol. 542, no. 1–2, pp. 205–212, May. 2018. https://doi.org/10.1016/j.ijpharm.2018.03.011

S. C. S. R. De Moura; G. N. Schettini; A. O. Garcia; D. A. Gallina; I. D. Alvim; M. D. Hubinger, “Stability of Hibiscus Extract Encapsulated by Ionic Gelation Incorporated in Yogurt,” Food Bioprocess Technol., vol. 12, pp. 1500–1515, Jul. 2019. https://doi.org/10.1007/s11947-019-02308-9

S. Zhao et al., “Study of chemical characteristics, gelation properties and biological application of calcium pectate prepared using apple or citrus pectin,” Int. J. Biol. Macromol., vol. 109, pp. 108–187, Apr. 2018. https://doi.org/10.1016/j.ijbiomac.2017.12.082

M. Rahat Hossain; A. K. Mallik; M. Mizanur Rahman, “Chapter 7 - Fundamentals of chitosan for biomedical applications,” in Handbook of Chitin and Chitosan Chitin and Chitosan based Polymer Materials for Various Applications, Eds. Woodhead, 2017, pp. 3–30. https://doi.org/10.1016/B978-0-12-817966-6.00007-8

H. Rajabi; S. Mahdi Jafari; G. Rajabzadeh; M. Sarfarazi; S. Sedaghati, “Chitosan-gum Arabic complex nanocarriers for encapsulation of saffron bioactive components,” Colloids Surfaces: Physicochemical and Engineering Aspects, vol. 578, Oct. 2019. https://doi.org/10.1016/j.colsurfa.2019.123644

S. K. H. Gulrez; S. Al-assaf; O. Phillips, “Hydrogels: Methods of Preparation, Characterisation and Applications,” in Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications, InTech, 2011. http://dx.doi.org/10.5772/24553

S. Muhammad Auwal; M. Zarei; C. Ping Tan; M. Basri; N. Saari, “Improved In Vivo Efficacy of Anti-Hypertensive Biopeptides Encapsulated in Chitosan Nanoparticles Fabricated by Ionotropic Gelation on Spontaneously Hypertensive Rats,” Nanomaterials, vol. 7, no. 12, Dec. 2017. https://dx.doi.org/10.3390%2Fnano7120421

M. Fernández-Gutiérrez; O. Bossio; L. G. Gómez-Mascaraque; B. Vázquez-Lasa; J. San Román, “Bioactive Chitosan Nanoparticles Loaded with Retinyl Palmitate: A Simple Route Using Ionotropic Gelation,” Macromol. Chem. Phys., vol. 216, no. 12, pp. 1321–1332, Jun. 2015. https://doi.org/10.1002/macp.201500034

D. Ismik; D. Sezgin Mansuroglu; E. Bulus; Y. M. Sahin, “The Use of Chitosan Nanoparticles Obtained by Ionic Gelation Method as a Drug Delivery System,” J. Mater. Electron. devices, vol. 5, no. 1, pp. 6–11, Nov. 2020. http://dergi-fytronix.com/index.php/jmed/article/view/109

Y. Luo; Q. Wang; Y. Zhang, “Biopolymer-based Nanotechnology Approaches to Deliver Bioactive Compounds for Food Applications: A Perspective on the Past, Present and Future,” J. Agric. Food Chem., vol. 68, no. 46, pp. 12993–13000, Mar. 2020. https://doi.org/10.1021/acs.jafc.0c00277

S. K. Velázquez-Gutierrez; E. Alpinazar-Reyes; J. Cruz-Olivares; J. F. Barrera-Pichardo; M. E. Rodríguez-Huezo; C. Pérez-Alonso, “Ionic gelation encapsulation of sesame oil with sodium alginate-nopal mucilage blends: Encapsulation efficiency and oxidative stability,” Rev. Mex. Ing. Química, vol. 19, pp. 349–362, 2020. http://hdl.handle.net/20.500.11799/109009

O. S. Kamaldeen; C. C. Ariahu; M. I. Yusufu, “Application of soy protein isolate and cassava starch based film solutions as matrix for ionic encapsulation of carrot powders,” J. Food Sci. Technol., vol. 57, pp. 4171–4181, Apr. 2020. https://doi.org/10.1007/s13197-020-04455-w

F. H. Chalé; D. Betancur Ancona; M. R. Segura Campos, “Compuestos bioactivos de la dieta con potencial en la prevención de patologías relacionadas con sobrepeso y obesidad; péptidos biológicamente activos,” Nutr. Hosp., vol. 29, no. 1, pp. 10–20, Sep. 2014. http://dx.doi.org/10.3305/nh.2014.29.1.6990

M. R. Islam Shishir; L. Xie; C. Sun; X. Zheng; W. Chen, “Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters,” Trends food Sci. Technol., vol. 78, pp. 34–60, Aug. 2018. https://doi.org/10.1016/j.tifs.2018.05.018

T. R. Aguirre Calvo; M. Perulline; P. R. Santagapita, “Encapsulation and betacyanins and polyphenols extracted from leaves and steams of beetroot in Ca(II)-alginate beads: A structural study,” Journal of Food Engineering, vol. 235, pp. 32–40, Oct. 2018. https://doi.org/10.1016/j.jfoodeng.2018.04.015

J. Villarroel; N. Sanabria; L. Pérez, “Compuestos bioactivos y degradación cinética de antocianinas en extractos de Hibiscus Sabdariffa L.,” Rev. Cienc. Tecnol. Agrollania, vol. 19, pp. 18–24, Jan. 2020.

P. Chagua Rodríguez; R. J. Malpartida Yapias; A. Ruíz Rodríguez, “Tiempo de pasteurización y su respuesta en las características químicas y de capacidad antioxidante de aguamiel de Agave americana L.,” Rev. Investig. Altoandinas, vol. 22, no. 1, pp. 45–57, Sep. 2020. http://dx.doi.org/10.18271/ria.2020.532

M. A. S. Santos; M. T. C. Machado, “Coated alginate – chitosan particles to improve the stability of probiotic yeast,” Int. J. Food Sci. Technol., vol. 56, no. 5, pp. 2122¬-2131, May. 2020. https://doi.org/10.1111/ijfs.14829

J. Un Kim; B. Kim; H. Muhammad Shahbaz; S. Hyun Lee; D. Park; J. Park, “Encapsulation of probiotic Lactobacillus acidophilus by ionic gelation with electrostatic extrusion for enhancement of survival under simulated gastric conditions and during refrigerated storage,” Int. J. Food Sci. Technol., vol. 52, no. 2, pp. 519–530, Nov. 2016. https://doi.org/10.1111/ijfs.13308

K. Ozaltin; P. S. Postnikov; M. E. Trusova; V. Sedlarik; A. Di Martino, “Polysaccharides based microspheres for multiple encapsulations and simultaneous release of proteases,” Int. J. Biol. Macromol., vol. 132, pp. 24–31, Jul. 2019. https://doi.org/10.1016/j.ijbiomac.2019.03.189

M. T. Sánchez; M. A. Ruíz; A. Lasserrot; M. Hormigo; M. E. Morales, “An improved ionic gelation method to encapsulate Lactobacillus spp. bacteria: Protection, survival and stability study,” Food Hydrocoll., vol. 69, pp. 67–75, Aug. 2017. https://doi.org/10.1016/j.foodhyd.2017.01.019

M. V. Lara Fiallos; T. Ayala Chamorro; E. González Suárez; A. Pérez Martínez, “Obtención de sirope de fructosa por encapsulación enzimática de inulinasa en alginato de sodio,” Rev. Cent. Azúcar, vol. 48, no. 1, pp. 117–126, Jan. 2021. http://centroazucar.uclv.edu.cu/index.php/centro_azucar/article/view/647

M. Afzaal et al., “Encapsulation of Bifidobacterium bifidum by internal gelation method to access the viability in cheddar cheese and under simulated gastrointestinal conditions,” Food Sci. Nutr., vol. 8, no. 6, pp. 2739–2747, Apr. 2020. https://doi.org/10.1002/fsn3.1562

E. Durán; C. Villalobos; O. Churio; F. Pizarro; C. Valenzuela, “Encapsulación de hierro: Otra estrategia para la prevención o tratamiento de la anemia por deficiencia de hierro,” Rev. Chil. Nutr., vol. 44, no. 3, pp. 234–243, Jun. 2017. http://dx.doi.org/10.4067/s0717-75182017000300234

S. Pedroso-Santana; N. Fleitas-Salazar, “Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes,” Polym. Int., vol. 69, no. 5, pp. 443–447, Jan. 2020. https://doi.org/10.1002/pi.5970

J. J. Pérez Bravo; N. J. François, “Chitosan/Starch Matrices Prepared by Ionotropic Gelation: Rheological Characterization, Swelling Behavior and Potassium Nitrate Release Kinetics,” J. Polym. Environ., vol. 28, pp. 2681–2690, Oct. 2020. https://doi.org/10.1007/s10924-020-01798-5

X. Li; Z. Wu; Y. He; B. Ce Ye; J. Wang, “Preparation and characterization of monodisperse microcapsules with alginate and bentonite via external gelation technique encapsulating Pseudomonas putida Rs-198,” J. Biomater. Sci. Polym. Ed., vol. 28, no. 14, pp. 1556–1571, Jun. 2017. https://doi.org/10.1080/09205063.2017.1335075

B. Wang et al., “Alginate-based composites for environmental applications: a critical review,” Crit. Rev. Environ. Sci. Technol., vol. 49, no. 4, pp. 318-356, Dec. 2018. https://doi.org/10.1080/10643389.2018.1547621

H. Basu; R. K. Singhal; M. V. Pimple; A. V. R. Reddy, “Arsenic Removal from Groundwater by Goethite Impregnated Calcium Alginate Beads,” Water, Air, Soil Pollut., vol. 226, Feb. 2015. https://doi.org/10.1007/s11270-014-2251-z

M. Y. Arıca; G. Bayramoglu; M. Yılmaz; S. Bektaş; O. Genc, “Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii,” J. Hazard. Mater., vol. 109, no. 1-3 pp. 191–199, Jun. 2004. http://dx.doi.org/10.1016/j.jhazmat.2004.03.017

C.S.C. Chiew et al., “Halloysite/alginate nanocomposite beads: Kinetics, equilibrium and mechanism for lead adsorption,” Appl. Clay Sci., vol. 119, part. 2, pp. 301–310, Jan. 2016. http://dx.doi.org/10.1016/j.clay.2015.10.032

D. Daâssi; S. Rodríguez-Couto; M. Nasri; T. Mechichi, “Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads,” Int. Biodeterior. Biodegradation, vol. 90, pp. 71–78, May. 2014. http://dx.doi.org/10.1016/j.ibiod.2014.02.006

A. Benhouria; A. Islam; H. Zaghouane-Boudiaf; M. Boutahala; B. H. Hameed, “Calcium alginate-bentonite-activated carbon composite beads as highly effective adsorbent for methylene blue,” Chem. Eng. J., vol. 270, pp. 621–630, Jun. 2015. http://dx.doi.org/10.1016/j.cej.2015.02.030

L. Linhares; K. Alencar Silva; V. Pereira de Sousa; G. Cardoso Fontes-Sant’Ana; M. H. Rocha-Leão, “Blueberry Residue Encapsulation by Ionotropic Gelation,” Plant Foods Hum. Nutr., vol. 73, pp. 278–286, Dec. 2018. https://doi.org/10.1007/s11130-018-0685-y

N. Cujic; K. Trifkovic; B. Bugarski; S. Ibric; D. Pljevljakusic; K. Savikin, “Chokeberry (Aronia melanocarpa L.) extract loaded in alginate and alginate/inulin system,” Ind. Crops Prod., vol. 86, pp. 120–131, Aug. 2016. https://doi.org/10.1016/j.indcrop.2016.03.045

J. Guo; M. M. Giusti; G. Kaletunç, “Encapsulation of purple corn and blueberry extracts in Alginate-pectin hydrogel particles: Impact of processing and storage parameters on encapsulation efficiency,” Food Res. Int., vol. 107, pp. 414–422, May. 2018. https://doi.org/10.1016/j.foodres.2018.02.035

S. Ntohogian et al., “Chitosan Nanoparticles with Encapsulated Natural and UF-Purified Annatto and Saffron for the Preparation of UV Protective Cosmetic Emulsions,” Molecules, vol. 23, no. 9, Aug. 2018. https://doi.org/10.3390/molecules23092107

X. Zhao; F. Qi; C. Yuan; W. Du; D. Liu, “Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization,” Renew. Sustain. Energy Rev., vol. 44, pp. 182–197, Apr. 2015. https://doi.org/10.1016/j.rser.2014.12.021

L. I. Rigoli Ferraz et al., “Application of home-made lipase in the production of geranyl propionate by esterification of geraniol and propionic acid in solvent-free system,” Biocatal. Agric. Biotechnol., vol. 4, no. 1, pp. 44–48, Jan. 2015. https://doi.org/10.1016/j.bcab.2014.07.003

L. Blemur; T. C. Le; L. Marcocci; P. Pietrangeli; M. A. Mateescu, “Carboxymethyl starch/alginate microspheres containing diamine oxidase for intestinal targeting,” Biotechnol. Appl. Biochem., vol. 63, no. 3, pp. 344–353, May. 2015. https://doi.org/10.1002/bab.1369

How to Cite
[1]
N. Ortiz-Romero, L. A. Ochoa-Martínez, S. M. González-Herrera, O. M. Rutiaga-Quiñones, and J. A. Gallegos-Infante, “Advances in Research into Encapsulation through Ionic Gelation: A Systematic Review”, TecnoL., vol. 24, no. 52, p. e1962, Aug. 2021.

Downloads

Download data is not yet available.
Published
2021-08-26
Section
Review Article
Crossref Cited-by logo