Regulación de tensión en convertidores DC-DC clásicos de segundo orden mediante la aplicación del control óptimo inverso con acción proporcional-integral

Palabras clave: Control óptimo inverso, convertidores DC-DC, función de Lyapunov, sistemas de control no lineal, sistema dinámico

Resumen

Este artículo aborda el problema de regulación de tensión para convertidores DC-DC clásicos de segundo orden mediante una técnica de control no lineal basada en la teoría de control óptimo inverso. En la literatura hay pocos artículos que describen el control optimo inverso para convertidores DC-DC, por tanto, este estudio es una contribución al estado del arte en técnica de control no lineal para convertidores DC-DC. En este orden de ideas, el objetivo principal de esta investigación fue implementar la teoría de control óptimo inverso con acción integral a las topologías típicas de conversión DC-DC para regular tensión, independientemente de las variaciones de la carga y de la aplicación. Las topologías de los convertidores analizados fueron: (i) Buck; (ii) Boost; (iii) Buck-Boost; y (iv) Buck-Boost No Inversor. Se planteó un modelo dinámico en función del error de las variables de estado, el cual ayudó a demostrar que la ley de control óptimo inverso con acción proporcional-integral implementada para los diferentes convertidores garantiza la estabilidad para operación en lazo cerrado mediante el teorema de Lyapunov. Se realizó la validación numérica mediante simulaciones en el software PSIM, comparando la ley de control establecida, la ley de control PI basada en pasividad y un control en lazo abierto. Como conclusión, se pudo determinar que el método propuesto es más sencillo de implementar y con mejor comportamiento dinámico que el PI-PBC, garantizando la estabilidad asintótica desde el diseño de control en lazo cerrado.

Biografía del autor/a

Juan Sebastián Gómez-Chitiva, Universidad Distrital Francisco José de Caldas, Colombia

Universidad Distrital Francisco José de Caldas, Bogotá – Colombia, juasgomezc@correo.udistrital.edu.co

Andrés Felipe Escalante-Sarrias, Universidad Distrital Francisco José de Caldas, Colombia

Universidad Distrital Francisco José de Caldas, Bogotá – Colombia, afescalantes@correo.udistrital.edu.co

Oscar Danilo Montoya* , Universidad Distrital Francisco José de Caldas, Colombia

Universidad Distrital Francisco José de Caldas, Bogotá – Colombia, odmontoyag@udistrital.edu.co

Referencias bibliográficas

J. O. Petinrin and M. Shaaban, “Overcoming Challenges of Renewable Energy on Future Smart Grid,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 10, no. 2, pp. 229-234, Jun. 2012, https://doi.org/10.12928/telkomnika.v10i2.781

IEA, “Global EV Outlook 2021,” Paris, 2021. Accessed: Mar. 20, 2022. [Online]. Available: https://www.iea.org/reports/global-ev-outlook-2021

IEA, “Net Zero by 2050: A Roadmap for the Global Energy Sector,” Paris, 2021. Accessed: Mar. 20, 2022. [Online]. Available: https://www.iea.org/reports/net-zero-by-2050

IEA, “World Energy Outlook 2021: Part of World Energy Outlook,” Paris, 2021. Accessed: Mar. 20, 2022. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2021

J. Lee and F. Zhao, “Global Wind Report 2021,” Global Wind Energy Council, 2021. Accessed: Mar. 20, 2022. [Online]. Available: https://gwec.net/global-wind-report-2021/

REN21, “Renewables 2021 Global Status Report,” Paris, 2021. Accessed: Mar. 20, 2022. [Online]. Available: https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf

S. Hoyos, C. J. Franco, and I. Dyner, “Integration of Renewable Energies and its Impact on Electricity Price,” Ing Cienc, vol. 13, no. 26, pp. 115–146, Nov. 2017, https://doi.org/10.17230/ingciencia.13.26.5

J. Tello Maita and A. R. Marulanda Guerra, “Modelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión,” Dyna, vol. 84, no. 202, pp. 102–111, Jul. 2017, https://doi.org/10.15446/dyna.v84n202.63354

A. Mehdi, A. Boulahia, H. Medouce, and H. Benalla, “Induction generator using AC/DC/AC PWM converters and its application to the wind-energy systems,” in Eurocon 2013, Jul. 2013, pp. 1038–1043. https://doi.org/10.1109/EUROCON.2013.6625109

N. Bajoria, P. Sahu, R. K. Nema, and S. Nema, “Overview of different control schemes used for controlling of DC-DC converters,” in 2016 International Conference on Electrical Power and Energy Systems (ICEPES), Dec. 2016, pp. 75–82. https://doi.org/10.1109/ICEPES.2016.7915909

F. Mumtaz, N. Zaihar Yahaya, S. Tanzim Meraj, B. Singh, R. Kannan, and O. Ibrahim, “Review on non-isolated DC-DC converters and their control techniques for renewable energy applications,” Ain Shams Engineering Journal, vol. 12, no. 4, pp. 3747–3763, Dec. 2021, https://doi.org/10.1016/j.asej.2021.03.022

Q. Xu, N. Vafamand, L. Chen, T. Dragičević, L. Xie, and F. Blaabjerg, “Review on Advanced Control Technologies for Bidirectional DC/DC Converters in DC Microgrids,” IEEE J Emerg Sel Top Power Electron, vol. 9, no. 2, pp. 1205–1221, Apr. 2021, https://doi.org/10.1109/JESTPE.2020.2978064

A. Kelly and K. Rinne, “Control of dc-dc converters by direct pole placement and adaptive feedforward gain adjustment,” in Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005., Mar. 2005, vol. 3, pp. 1970–1975. https://doi.org/10.1109/APEC.2005.1453326

K. Sharma and D. K. Palwalia, “Design of digital PID controller for voltage mode control of DC-DC converters,” in 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS), Aug. 2017, vol. 2017, pp. 1–6. https://doi.org/10.1109/ICMDCS.2017.8211715

S. Chattopadhyay and S. Das, “A Digital Current-Mode Control Technique for DC–DC Converters,” IEEE Trans Power Electron, vol. 21, no. 6, pp. 1718–1726, Nov. 2006, https://doi.org/10.1109/TPEL.2006.882929

H. Peng and D. Maksimovic, “Digital current-mode controller for DC-DC converters,” in Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, Mar. 2005, vol. 2, pp. 899–905. https://doi.org/10.1109/APEC.2005.1453091

M. Namnabat, M. Bayati Poodeh, and S. Eshtehardiha, “Comparison the control methods in improvement the performance of the DC-DC converter,” in 2007 7th Internatonal Conference on Power Electronics, Oct. 2007, pp. 246–251. https://doi.org/10.1109/ICPE.2007.4692386

Q. Feng, J. Y. Hung, and R. M. Nelms, “The application of posicast control to DC-DC converters,” in IECEC ’02. 2002 37th Intersociety Energy Conversion Engineering Conference, Jul. 2002, pp. 698–703. https://doi.org/10.1109/IECEC.2002.1392132

K. Udhayakumar, P. Lakshmi, and K. Boobal, “Hybrid posicast controller for a DC-DC buck converter,” Serbian Journal of Electrical Engineering, vol. 5, no. 1, pp. 121–138, 2008, https://doi.org/10.2298/SJEE0801121K

H. Li and X. Ye, “Sliding-mode PID control of DC-DC converter,” in 2010 5th IEEE Conference on Industrial Electronics and Applications, Jun. 2010, pp. 730–734. https://doi.org/10.1109/ICIEA.2010.5516952

K. Bendaoud et al., “Fuzzy logic controller (FLC): Application to control DC-DC buck converter,” in 2017 International Conference on Engineering & MIS (ICEMIS), May 2017, pp. 1–5. https://doi.org/10.1109/ICEMIS.2017.8272980

N. F. N. Ismail, I. Musirin, R. Baharom, and D. Johari, “Fuzzy logic controller on DC/DC boost converter,” in 2010 IEEE International Conference on Power and Energy, Nov. 2010, pp. 661–666. https://doi.org/10.1109/PECON.2010.5697663

H. K. Khleaf, A. K. Nahar, and A. S. Jabbar, “Intelligent control of DC-DC converter based on PID-neural network,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 10, no. 4, pp. 2254-2262, Dec. 2019, https://doi.org/10.11591/ijpeds.v10.i4.pp2254-2262

A. Dehghanzadeh, G. Farahani, H. Vahedi, and K. Al-Haddad, “Model predictive control design for DC-DC converters applied to a photovoltaic system,” International Journal of Electrical Power & Energy Systems, vol. 103, pp. 537–544, Dec. 2018, https://doi.org/10.1016/j.ijepes.2018.05.004

W. Gil-González, O. D. Montoya, C. Restrepo, and J. C. Hernández, “Sensorless Adaptive Voltage Control for Classical DC-DC Converters Feeding Unknown Loads: A Generalized PI Passivity-Based Approach,” Sensors, vol. 21, no. 19, p. 6367, Sep. 2021, https://doi.org/10.3390/s21196367

W. Gil-González, O. D. Montoya, and G. Espinosa-Perez, “Adaptive control for second-order DC–DC converters: PBC approach,” in Modeling, Operation, and Analysis of DC Grids, Elsevier, 2021, pp. 289–310. https://doi.org/10.1016/B978-0-12-822101-3.00016-2

C. J. Vega Pérez and R. Alzate Castaño, “Control óptimo inverso como alternativa para la regulación de un convertidor DC-DC elevador,” Tecnura, vol. 19, no. 46, pp. 65-78, Oct. 2015, https://doi.org/10.14483/udistrital.jour.tecnura.2015.4.a05

C. Vega and R. Alzate, “Inverse optimal control on electric power conversion,” in 2014 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Nov. 2014, pp. 1–5. https://doi.org/10.1109/ROPEC.2014.7036320

M. Villegas-Ruvalcaba, K. Gurubel-Tun, and A. Coronado-Mendoza, “Robust Inverse Optimal Control for a Boost Converter,” Energies, vol. 14, no. 9, p. 2507, Apr. 2021, https://doi.org/10.3390/en14092507

R. W. Erickson and D. Maksimović, Fundamentals of Power Electronics. Cham: Springer International Publishing, 2020. https://doi.org/10.1007/978-3-030-43881-4

D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I, vol. 48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. https://doi.org/10.1007/b137541

R. H. G. Tan and L. Y. H. Hoo, “DC-DC converter modeling and simulation using state space approach,” in 2015 IEEE Conference on Energy Conversion (CENCON), Oct. 2015, pp. 42–47. https://doi.org/10.1109/CENCON.2015.7409511

A. Strauss, An Introduction to Optimal Control Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1968. https://doi.org/10.1007/978-3-642-51001-4

R. E. Kalman, “When Is a Linear Control System Optimal?” Journal of Basic Engineering, vol. 86, no. 1, pp. 51–60, Mar. 1964, https://doi.org/10.1115/1.3653115

C. Vega Pérez and R. Alzate Castaño, “Control óptimo inverso para sistemas no lineales en tiempo continuo,” Respuestas, vol. 19, no. 1, pp. 13–18, Jan. 2014, https://doi.org/10.22463/0122820X.4

R. Sepulchre, M. Janković, and P. V. Kokotović, Constructive Nonlinear Control. London: Springer London, 1997. https://doi.org/10.1007/978-1-4471-0967-9

L. Perko, Differential Equations and Dynamical Systems, vol. 7. New York, NY: Springer New York, 2001. https://doi.org/10.1007/978-1-4613-0003-8

X. Jiaqun and C. Haotian, “Regenerative brake of brushless DC motor for light electric vehicle,” in 2015 18th International Conference on Electrical Machines and Systems (ICEMS), Oct. 2015, pp. 1423–1428. https://doi.org/10.1109/ICEMS.2015.7385262

M. Q. Duong, H. H. Nguyen, T. H. D. Nguyen, T. T. Nguyen, and G. N. Sava, “Effect of component design on the DC/DC power converters dynamics,” in 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Mar. 2017, pp. 617–620. https://doi.org/10.1109/ATEE.2017.7905025

P. Rajarshi and D. Maksimovic, “Analysis of PWM nonlinearity in non-inverting buck-boost power converters,” in 2008 IEEE Power Electronics Specialists Conference, Jun. 2008, pp. 3741–3747. https://doi.org/10.1109/PESC.2008.4592538

Cómo citar
[1]
J. S. Gómez-Chitiva, A. F. Escalante-Sarrias, y O. D. Montoya, «Regulación de tensión en convertidores DC-DC clásicos de segundo orden mediante la aplicación del control óptimo inverso con acción proporcional-integral», TecnoL., vol. 25, n.º 55, p. e2369, nov. 2022.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2022-11-28
Sección
Artículos de investigación

Métricas