Aprendizaje por refuerzo como soporte a la predicción de la precipitación mensual. Caso de estudio: Departamento de Boyacá - Colombia

Palabras clave: Aprendizaje automático, aprendizaje reforzado, modulación CHIRPS, simulación Montecarlo

Resumen

La emisión de gases de efecto invernadero, atribuida directa o indirectamente a la actividad humana, es la principal causa del cambio climático a nivel mundial. Entre los gases emitidos, el dióxido de carbono (CO2) es el que más contribuye a la variación espacio temporal de magnitudes físicas como la humedad relativa, la presión atmosférica, la temperatura ambiente y, de manera más significativa, la precipitación. El objetivo de la investigación fue presentar un análisis de la predicción de la precipitación mensual en el departamento de Boyacá mediante el uso de modelos basados en aprendizaje reforzado (RL, por sus siglas en inglés). La metodología empleada consistió en extraer datos desde CHIRPS 2,0 (Climate Hazards Group InfraRed Precipitation with Station data, versión 2,0) con una resolución espacial de 0,05° que posteriormente fueron preprocesados para la implementación de enfoques basados en una simulación Montecarlo y aprendizaje reforzado profundo (DRL, por sus siglas en inglés) para proporcionar predicciones de la precipitación mensual. Los resultados obtenidos demostraron que la simulación Montecarlo como el DRL generan predicciones significativas de la precipitación mensual. Es esencial reconocer que los modelos convencionales basados en Aprendizaje profundo, como Memoria a Corto Plazo (LSTM) o Redes Convolucionales a Corto Plazo (ConvLSTM), pueden superar a los enfoques de simulación Montecarlo y DRL en términos de precisión de predicción. Se concluye que la implementación de técnicas de aprendizaje por refuerzo en modelos de predicción de la precipitación mensual detecta patrones de información que pueden ser usados como soporte a estrategias dirigidas a mitigar los riesgos económicos y sociales derivados de fenómenos climáticos.

Biografía del autor/a

Jimmy Alejandro Zea Gutiérrez, Universidad Pedagógica y Tecnológica de Colombia, Colombia

Universidad Pedagógica y Tecnológica de Colombia, Sogamoso-Colombia, jimmy.zea@uptc.edu.co

Marco Javier Suárez Barón, Universidad Pedagógica y Tecnológica de Colombia, Colombia

Universidad Pedagógica y Tecnológica de Colombia, Tunja-Colombia, juansebastian.gonzalez@uptc.edu.co

Juan Sebastián González Sanabria, Universidad Pedagógica y Tecnológica de Colombia, Colombia

Universidad Pedagógica y Tecnológica de Colombia, Tunja-Colombia, juansebastian.gonzalez@uptc.edu.co

Referencias bibliográficas

Esri. “Análisis y predicción de meteorología.” arcgis.com. Accessed: Feb. 19, 2024. [Online]. Available: https://learn.arcgis.com/es/paths/meteorology/

E. Mesgari, P. Mahmoudi, Y. Kord Tamandani, T. Tavousi, and S. M. Amir Jahanshahi, “A comparative assessment of the ability of different types of machine learning in short-term predictions of nocturnal frosts,” Acta Geophysica, vol. 72, no. 4, pp. 2955–2973, Aug. 2024. https://doi.org/10.1007/S11600-023-01276-1

IDEAM. “Predicción-IDEAM.” ideam.gov.co. Accessed: Feb. 19, 2024. [Online]. Available: http://ideam.gov.co/web/siac/prediccion

S. Zi-yi, and B. Wen-chao, “Machine learning model combined with CEEMDAN algorithm for monthly precipitation prediction,” Earth Sci. Inform., vol. 16, no. 2, pp. 1821–1833, Jun. 2023. https://doi.org/10.1007/S12145-023-01011-W

A. Thamm GmbH. “Become a data.musketeer.” alexanderthamm.com. Accessed: Feb. 19, 2024. [Online]. Available: https://www.alexanderthamm.com/de/karriere/

M. Akbarian, B. Saghafian, and S. Golian, “Monthly streamflow forecasting by machine learning methods using dynamic weather prediction model outputs over Iran,” Journal of Hydrology, vol. 620, p. 129480, May. 2023. https://doi.org/10.1016/J.JHYDROL.2023.129480

J. Nithyashri, R. K. Poluru, S. Balakrishnan, M. Ashok Kumar, P. Prabu, and S. Nandhini, “IOT based prediction of rainfall forecast in coastal regions using deep reinforcement model,” Measurement: Sensors, vol. 29, p. 100877, Oct. 2023. https://doi.org/10.1016/J.MEASEN.2023.100877

Y. Jun-He, C. Ching-Hsue, and C. Chia-Pan, “A time-series water level forecasting model based on imputation and variable selection method,” Comput. Intell. Neurosci., vol. 2017, pp. 1-11, Nov. 2017. https://doi.org/10.1155/2017/8734214

R. Yang, H. Liu, N. Nikitas, Z. Duan, Y. Li, and Y. Li, “Short-term wind speed forecasting using deep reinforcement learning with improved multiple error correction approach,” Energy, vol. 239, p. 122128, Jan. 2022. https://doi.org/10.1016/J.ENERGY.2021.122128

M. Zhang, Z. Xu, Y. Wang, S. Zeng, and X. Dong, “Evaluation of uncertain signals’ impact on deep reinforcement learning-based real-time control strategy of urban drainage systems,” J. Environ. Manage., vol. 324, p. 116448, Dec. 2022. https://doi.org/10.1016/J.JENVMAN.2022.116448

K. Skarlatos, E. S. Bekri, D. Georgakellos, P. Economou, and S. Bersimis, “Projecting Annual Rainfall Timeseries Using Machine Learning Techniques,” Energies 2023, Vol. 16, Page 1459, vol. 16, no. 3, p. 1459, Feb. 2023, https://doi.org/10.3390/EN16031459

P. D. Nolasco Ramírez, “Aplicación de Machine Learning para pronóstico de desplazamiento de lluvias usando imágenes del radar de lluvias de UDEP,” Trabajo de Pregrado, Universidad de Piura, Piura, Perú, 2023. [Online]. Available: https://hdl.handle.net/11042/6007

R. He, L. Zhang, and A. W. Z. Chew, “Data-driven multi-step prediction and analysis of monthly rainfall using explainable deep learning,” Expert Systems with Applications, vol. 235, p. 121160, Jan. 2024. https://doi.org/10.1016/J.ESWA.2023.121160

A. U. G. Senocak, M. T. Yilmaz, S. Kalkan, I. Yucel, and M. Amjad, “An explainable two-stage machine learning approach for precipitation forecast,” Journal of Hydrology, vol. 627, p. 130375, Dec. 2023. https://doi.org/10.1016/J.JHYDROL.2023.130375

C. Wang, J. Xu, G. Tang, Y. Yang, and Y. Hong, “Infrared Precipitation Estimation Using Convolutional Neural Network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 12, pp. 8612–8625, Dec. 2020. https://doi.org/10.1109/TGRS.2020.2989183

Q. Yuan et al., “Deep learning in environmental remote sensing: Achievements and challenges” Remote Sensing of Environment, vol. 241, p. 111716, 2020. https://doi.org/10.1016/j.rse.2020.111716

T. Nan et al., “Evaluation of shallow groundwater dynamics after water supplement in North China Plain based on attention-GRU model,” Journal of Hydrology, vol. 625, p. 130085, Oct. 2023. https://doi.org/10.1016/J.JHYDROL.2023.130085

E. E. León Baque, V. D. Vásquez Granda, and M. D. Valderrama Chávez, “Cambios en patrones de precipitación y temperatura en el Ecuador: regiones sierra y oriente,” Dilemas contemporáneos: educación, política y valores, vol. 8, no. SPE, Mar. 2021. https://doi.org/10.46377/DILEMAS.V8I.2608

C. J. Fernández Pérez, G. E. Cely Reyes, and P. A. Ramírez, “Cuantificación de la captura de carbono y análisis de las propiedades del suelo en coberturas naturales y una plantación de pino en el páramo de Rabanal, Colombia,” Cuad. Geogr. Rev. Colomb. Geogr., vol. 28, no. 1, pp. 121–133, Jan. 2019. https://doi.org/10.15446/RCDG.V28N1.66152

E. Morales Rojas, E. A. Díaz Ortiz, L. García, and M. E. Milla Pino, “Pronóstico de precipitaciones mensuales: Un estudio de caso en las comunidades nativas del Perú,” Revista Científica Pakamuros, vol. 9, no. 3, pp. 71–85, Sep. 2021. https://doi.org/10.37787/13azmg02

D. M. Herrera Posada, and E. Aristizábal, “Modelo de inteligencia artificial y aprendizaje automático para la predicción espacial y temporal de eventos de sequía en el departamento del Magdalena, Colombia,” INGE CUC, vol. 18, no. 2, pp. 249–265, Nov. 2022. https://doi.org/10.17981/INGECUC.18.2.2022.20

E. Duarte. “Rainfall data for the department of Boyacá.” kaggle.com. Accessed: Feb. 19, 2024. [Online]. Available: https://www.kaggle.com/datasets/estebanduarte/rainfall-data-for-the-department-of-boyaca

M. A. Saleh, and H. M. Rasel, “Performance evaluation of Machine Learning based regression models for rainfall forecasting,” Research Square, vol. 25, Jan. 2024. https://doi.org/10.21203/RS.3.RS-3856741/V1

S. D. Latif, and A. N. Ahmed, “A review of deep learning and machine learning techniques for hydrological inflow forecasting,” Environment, Development and Sustainability, vol. 25, no. 11, pp. 12189–12216, Mar. 2023. https://doi.org/10.1007/S10668-023-03131-1

S. Eddamiri, F. Z. Bassine, V. Ongoma, T. Epule Epule, and A. Chehbouni, “An automatic ensemble machine learning for wheat yield prediction in Africa,” Multimed. Tools Appl., Jan. 2024. https://doi.org/10.1007/S11042-024-18142-X

D. Elavarasan, and P. M. Durairaj Vincent, “Crop Yield Prediction Using Deep Reinforcement Learning Model for Sustainable Agrarian Applications,” IEEE Access, vol. 8, pp. 86886–86901, May. 2020. https://doi.org/10.1109/ACCESS.2020.2992480

J. B. Valencia, V. V. Guryanov, J. Mesa-Diez, N. Diaz, D. Escobar-Carbonari, and A. V. Gusarov, “Predictive Assessment of Climate Change Impact on Water Yield in the Meta River Basin, Colombia: An InVEST Model Application,” Hydrology, vol. 11, no. 2, p. 25, Feb. 2024. https://doi.org/10.3390/HYDROLOGY11020025

G. Sharma, A. Singh, and S. Jain, “A hybrid deep neural network approach to estimate reference evapotranspiration using limited climate data,” Neural Comput. Appl., vol. 34, no. 5, pp. 4013–4032, Mar. 2022. https://doi.org/10.1007/S00521-021-06661-9

S. Duarte, G. A. Corzo Perez, G. Santos, and D. P. Solomatine, “Application of Natural Language Processing to Identify Extreme Hydrometeorological Events in Digital News Media: Case of the Magdalena River Basin, Colombia,” in Advanced Hydroinformatics: Machine Learning and Optimization for Water Resources, G. A. Corzo Perez, D. P. Solomatine, Ed., New York, NY, USA: Wiley, 2024, pp. 283–318. https://doi.org/10.1002/9781119639268.CH10

Z. Gao et al., “PreDiff: Precipitation Nowcasting with Latent Diffusion Models,” 2023, arXiv: 2307.10422. https://arxiv.org/abs/2307.10422v2

Cómo citar
[1]
J. A. Zea Gutiérrez, M. J. Suárez Barón, y J. S. González Sanabria, «Aprendizaje por refuerzo como soporte a la predicción de la precipitación mensual. Caso de estudio: Departamento de Boyacá - Colombia», TecnoL., vol. 27, n.º 60, p. e3017, jun. 2024.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2024-06-27
Sección
Artículos de investigación

Métricas

Datos de los fondos

Crossref Cited-by logo