Potencial de generación de electricidad desde residuos sólidos en tres municipios colombianos

  • Santiago Alzate Arias Instituto Tecnológico Metropolitano
  • Bonie Restrepo-Cuestas Instituto Tecnológico Metropolitano
  • Álvaro Jaramillo-Duque Universidad de Antioquia
Palabras clave: Residuos sólidos urbanos, residuos a energía, biogás, digestión anaerobia, incineración

Resumen

En este trabajo se estimó el potencial de producción de energía eléctrica desde residuos sólidos urbanos. Para lograrlo, se estudiaron dos tecnologías de conversión: incineración (conversión térmica) y digestión anaerobia (conversión biológica). Los municipios colombianos de Pasto (Nariño), Andes (Antioquia) y Guayatá (Boyacá) fueron seleccionados como poblaciones representativas del contexto nacional, debido a sus características socioeconómicas y demográficas, además de la disponibilidad pública de sus planes de gestión de residuos. Los resultados muestran que la incineración es viable en la ciudad de Pasto y Andes, mientras que la digestión anaerobia es posible en los tres escenarios.

Biografía del autor/a

Santiago Alzate Arias, Instituto Tecnológico Metropolitano

MEng in Industrial Energy Management, Faculty of Engineering

Bonie Restrepo-Cuestas, Instituto Tecnológico Metropolitano

MSc in Electrical Engineering, Faculty of Engineering

Álvaro Jaramillo-Duque, Universidad de Antioquia

PhD in Electrical Engineering, Electrical Engineering Department

Referencias bibliográficas

[1] ONU, “La situación demográfica en el mundo,” New York, New York, USA, 2014.
[2] “El futuro que queremos las ciudades,” in RIO+20 Conferencia de las Naciones Unidas sobre el Desarrollo Sostenible, 2012, pp. 2011–2013.
[3] A. U. Zaman and S. Lehmann, “The zero waste index: a performance measurement tool for waste management systems in a ‘zero waste city,’” J. Clean. Prod., vol. 50, pp. 123–132, Jul. 2013.
[4] A. U. Zaman, “Measuring waste management performance using the ‘Zero Waste Index’: the case of Adelaide, Australia,” J. Clean. Prod., vol. 66, pp. 407–419, Mar. 2014.
[5] C. Ofori-Boateng, K. T. Lee, and M. Mensah, “The prospects of electricity generation from municipal solid waste (MSW) in Ghana: A better waste management option,” Fuel Process. Technol., vol. 110, pp. 94–102, Jun. 2013.
[6] Superintendencia de Servicios Públicos Domiciliarios República de Colombia, “Disposición Final de Residuos Sólidos - Informe Nacional,” Bogotá D.C., 2015.
[7] G. Arrieta Bernate, Análisis de la Producción de Residuos Sólidos de Pequeños y Grandes Productores en Colombia. Bogotá: Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2008.
[8] O. Sabalza and O. Villamizar, “Evaluación del potencial energético de los residuos sólidos orgánicos urbanos provenientes de las plazas de mercado y diseño conceptual de una planta de digestión anaerobia para su aprovechamiento industrial en Colombia,” Universidad Industrial de Santander, 2009.
[9] Congreso de Colombia, Ley N° 1715 del 13 de mayo de 2014, no. May. 2014, p. 26.
[10] Environment and Plastics Industry Council (EPIC), “A Review of the Options for the Thermal Treatment of Plastics,” Mississauga, Ontario, 2004.
[11] B. Ž. Bajić, S. N. Dodić, D. G. Vučurović, J. M. Dodić, and J. a. Grahovac, “Waste-to-energy status in Serbia,” Renew. Sustain. Energy Rev., vol. 50, pp. 1437–1444, Oct. 2015.
[12] E. Autret, F. Berthier, A. Luszezanec, and F. Nicolas, “Incineration of municipal and assimilated wastes in France: Assessment of latest energy and material recovery performances,” J. Hazard. Mater., vol. 139, no. 3, pp. 569–574, Jan. 2007.
[13] L. Zheng et al., “Preferential policies promote municipal solid waste (MSW) to energy in China: Current status and prospects,” Renew. Sustain. Energy Rev., vol. 36, pp. 135–148, Aug. 2014.
[14] H. M. Zakir Hossain, Q. Hasna Hossain, M. M. Uddin Monir, and M. T. Ahmed, “Municipal solid waste (MSW) as a source of renewable energy in Bangladesh: Revisited,” Renew. Sustain. Energy Rev., vol. 39, pp. 35–41, Nov. 2014.
[15] T. O. Somorin, S. Adesola, and A. Kolawole, “State-level assessment of the waste-to-energy potential (via incineration) of municipal solid wastes in Nigeria,” J. Clean. Prod., vol. 164, pp. 804–815, Oct. 2017.
[16] O. K. M. Ouda, H. M. Cekirge, and S. A. R. Raza, “An assessment of the potential contribution from waste-to-energy facilities to electricity demand in Saudi Arabia,” Energy Convers. Manag., vol. 75, pp. 402–406, Nov. 2013.
[17] M. Chakraborty, C. Sharma, J. Pandey, and P. K. Gupta, “Assessment of energy generation potentials of MSW in Delhi under different technological options,” Energy Convers. Manag., vol. 75, pp. 249–255, Nov. 2013.
[18] O. K. M. Ouda, S. A. Raza, A. S. Nizami, M. Rehan, R. Al-Waked, and N. E. Korres, “Waste to energy potential: A case study of Saudi Arabia,” Renew. Sustain. Energy Rev., vol. 61, pp. 328–340, Aug. 2016.
[19] X. Zhao, G. Jiang, A. Li, and L. Wang, “Economic analysis of waste-to-energy industry in China,” Waste Manag., vol. 48, pp. 604–618, Feb. 2016.
[20] K. A. Kalyani and K. K. Pandey, “Waste to energy status in India: A short review,” Renew. Sustain. Energy Rev., vol. 31, pp. 113–120, Mar. 2014.
[21] G. V Ramakrishna, “Electricity Generation from Municipal Solid Waste,” 2004.
[22] L. Lombardi, E. Carnevale, and A. Corti, “A review of technologies and performances of thermal treatment systems for energy recovery from waste,” Waste Manag., vol. 37, pp. 26–44, Mar. 2015.
[23] IPSE, “En Necoclí los residuos de madera se convierten en importante recurso energético,” IPSE Prensa Noticias, 2011. [Online]. Available: http://www.ipse.gov.co/transparencia-y-acceso-a-informacion-publica/informacion-de-interes2/noticias/446-en-necocli-los-residuos-de-madera-se-convierten-en-importante-recurso-energetico. [Accessed: 23-Jan-2018].
[24] F. C. Luz et al., “Techno-economic analysis of municipal solid waste gasification for electricity generation in Brazil,” Energy Convers. Manag., vol. 103, pp. 321–337, Oct. 2015.
[25] I. Kayes and a H. Tehzeeb, “Waste to energy: A lucrative alternative,” in 2009 1st International Conference on the Developements in Renewable Energy Technology (ICDRET), 2009, pp. 1–4.
[26] C. H. Coimbra-Araújo et al., “Brazilian case study for biogas energy: Production of electric power, heat and automotive energy in condominiums of agroenergy,” Renew. Sustain. Energy Rev., vol. 40, pp. 826–839, Dec. 2014.
[27] GICON, “Valorización energética de los residuos a través de tratamientos biológicos - tecnología de biogás,” in 1aConferencia panamericana - Waste to Energy 2016, 2016, pp. 41–50.
[28] S. E. Mbuligwe and G. R. Kassenga, “Feasibility and strategies for anaerobic digestion of solid waste for energy production in Dar es Salaam city, Tanzania,” Resour. Conserv. Recycl., vol. 42, no. 2, pp. 183–203, Sep. 2004.
[29] J. Jiang, J. Sui, S. Wu, Y. Yang, and L. Wang, “Prospects of anaerobic digestion technology in China,” Tsinghua Sci. Technol., vol. 12, no. 4, pp. 435–440, Aug. 2007.
[30] U. Di Matteo, B. Nastasi, A. Albo, and D. Astiaso Garcia, “Energy Contribution of OFMSW (Organic Fraction of Municipal Solid Waste) to Energy-Environmental Sustainability in Urban Areas at Small Scale,” Energies, vol. 10, no. 2, p. 229, Feb. 2017.
[31] M. M. V. Leme, M. H. Rocha, E. E. S. Lora, O. J. Venturini, B. M. Lopes, and C. H. Ferreira, “Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste (MSW) in Brazil,” Resour. Conserv. Recycl., vol. 87, pp. 8–20, Jun. 2014.
[32] X. Hao, H. Yang, and G. Zhang, “Trigeneration: A new way for landfill gas utilization and its feasibility in Hong Kong,” Energy Policy, vol. 36, no. 10, pp. 3662–3673, Oct. 2008.
[33] R. Mambeli Barros, G. L. Tiago Filho, and T. R. da Silva, “The electric energy potential of landfill biogas in Brazil,” Energy Policy, vol. 65, pp. 150–164, Feb. 2014.
[34] S. S. Mustafa, S. S.Mustafa, and A. H. Mutlag, “Kirkuk municipal waste to electrical energy,” Int. J. Electr. Power Energy Syst., vol. 44, no. 1, pp. 506–513, Jan. 2013.
[35] Q. Aguilar-Virgen, P. Taboada-González, and S. Ojeda-Benítez, “Analysis of the feasibility of the recovery of landfill gas: a case study of Mexico,” J. Clean. Prod., vol. 79, pp. 53–60, Sep. 2014.
[36] K. M. N. Islam, “Municipal solid waste to energy generation: An approach for enhancing climate co-benefits in the urban areas of Bangladesh,” Renew. Sustain. Energy Rev., vol. 81, pp. 2472–2486, Jan. 2018.
[37] J. Prieto and E. C. Luengas Pinzón, “La Ley orgánica de ordenamiento territorial, como instrumento para la integración del ordenamiento territorial y ambiental,” Revista gestión integral en ingeniería neogranadina, Bogotá D.C., Colombia, p. 17, Dec-2011.
[38] Congreso de Colombia, Ley 388 del 18 de Julio. 1997, p. 79.
[39] G. J. Posada Hernandez, “Agrupación de municipios colombianos según características de ruralidad,” Universidad Nacional de Colombia, 2010.
[40] O. K. M. Ouda, S. a. Raza, R. Al-Waked, J. F. Al-Asad, and A.-S. Nizami, “Waste-to-energy potential in the Western Province of Saudi Arabia,” J. King Saud Univ. - Eng. Sci., vol. 29, no. 3, pp. 212–220, Jul. 2017.
[41] O. F. Corredor Becerra, “Evaluación del potencial energético de la biomasa residual proveniente de cultivos energéticos,” 2008.
[42] A. Gómez, J. Zubizarreta, M. Rodrigues, C. Dopazo, and N. Fueyo, “Potential and cost of electricity generation from human and animal waste in Spain,” Renew. Energy, vol. 35, no. 2, pp. 498–505, Feb. 2010.
[43] N. J. Themelis, M. Elena, D. Barriga, P. Estevez, and M. G. Velasco, Guidebook for the application of waste to energy technologies in Latin America and the Caribbean. New York, N.Y.: Earth Engineering Center, Columbia University, 2013.
[44] B. Leckner, “Process aspects in combustion and gasification Waste-to-Energy (WtE) units,” Waste Manag., vol. 37, pp. 13–25, Mar. 2015.
[45] Grupo EPM, “Gestión y valorización de residuos sólidos urbanos (RSU). Evaluación de nuevas oportunidades de negocio,” in 1aConferencia panamericana - Waste to Energy 2016, 2016, p. 25.
[46] J. D. Murphy and K. McCarthy, “The optimal production of biogas for use as a transport fuel in Ireland,” Renew. Energy, vol. 30, no. 14, pp. 2111–2127, Nov. 2005.
[47] Municipio de Guayatá, “Plan de Gestión Integral de Residuos Sólidos PGIRS Municipio de Guayatá,” Guayatá,” SLIDEX.TIPS, 2015. [Online]. Available: https://slidex.tips/queue/plan-de-gestion-integral-de-residuos-solidos-pgirs-municipio-de-guayata-boyaca-c?&queue_id=-1&v=1524775150&u=MTkwLjI0OC4yOC4xMzE=.
[48] I. C. Arroyave Tobón, “Plan De Gestión De Residuos Sólidos Municipio De Andes.” pp. 43–45, 2005.
[49] R. Delgado Guerrero, Plan de Gestión Integral de Residuos Sólidos Municipio de Pasto. San Juan de Pasto, Nariño, Colombia: EMAS de Pasto, 2007.
[50] A. Estrada Wiechers, “Pre-feasibility study of using the Circulating Fluid Bed ( CFB ) waste-to-energy technology in Mexico City,” Columbia University, 2015.
[51] M. Rafiq Khan and H. Tanveer, “Production of thermoelectric power from Solid Waste of Urban Lahore,” in 2011 International Conference & Utility Exhibition on Power and Energy Systems: Issues and Prospects for Asia (ICUE), 2011, pp. 1–11.
[52] S. A. S. Abd Kadir, C.-Y. Yin, M. Rosli Sulaiman, X. Chen, and M. El-Harbawi, “Incineration of municipal solid waste in Malaysia: Salient issues, policies and waste-to-energy initiatives,” Renew. Sustain. Energy Rev., vol. 24, pp. 181–186, Aug. 2013.
[53] J. A. Poletto Filho, “Viabilidade Energética E Econômica Da Incineração De Resíduo Sólido Urbano Considerando a Segregação Para Reciclagem. Universidade Estadual Paulista,” Universidad Estadual Paulista, 2008.
[54] New York City Economic Development Corporation, Hunts Point Anaerobic Digestion Feasibility Study. New York: DSM Environmental Services, Inc, R.S. Lynch & Company, 2010.
[55] F. F. Palacio Suárez, “Estudio de la prefactibilidad de generar energía eléctrica utilizando como fuente primaria la cacota del café que se produce en la región de Cajamarca para satisfacer las necesidades de una finca que consume 1MWh por mes,” Universidad de la Salle, 2007.
[56] J. Cadena, S. Pérez, and J. Mora, “Análisis de viabilidad financiera de una central de generación de energía eléctrica a partir del biogás de vertedero,” Sci. Tech. Año XVI, vol. 51, pp. 1–7, 2012.
Cómo citar
[1]
S. Alzate Arias, B. Restrepo-Cuestas, y Álvaro Jaramillo-Duque, «Potencial de generación de electricidad desde residuos sólidos en tres municipios colombianos», TecnoL., vol. 21, n.º 42, pp. 111–128, may 2018.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2018-05-14
Sección
Artículos de investigación

Métricas