Comportamiento termo fluidodinámico del acero en un molde de colada continua: una revisión

Palabras clave: Molde de colada continua, Acero industrial, Solidificación del acero, termofluidodinámica, transferencia de calor

Resumen

Se ha realizado una revisión de la literatura para identificar qué se sabe en relación con los mecanismos de transferencia de calor, comportamiento termofluidodinámico, características de la solidificación, factores que influyen en el origen de defectos en el acero y uso de estrategias que impactan en una reducción de los defectos que se originan, principalmente, en el molde de la colada continua de acero. La metodología consistió en colectar y sintetizar conocimientos fragmentados, comparar la información encontrada en diferentes fuentes, y dar una respuesta, clara y actualizada, sobre el comportamiento termofluidodinámico del acero en el molde de colada. Como resultado de esta revisión se puede concluir que los defectos graves, como grietas y depresiones, están relacionados con el comportamiento termomecánico; las grietas se asocian al flujo turbulento, variación en el nivel del menisco, alta velocidad de colada y comportamiento inadecuado del polvo colador y la segregación se relaciona con la contracción del acero, temperatura y velocidad de colada y el flujo de calor en el contorno de la pieza. También se ha encontrado que, a pesar de la complejidad de los fenómenos que ocurren en el molde, se puede lograr la formación de una costra de acero adecuada y reducir la aparición de defectos, realizando las acciones que propicien un ajuste adecuado de los parámetros del molde. Además, es imprescindible aplicar prácticas de conicidad y oscilación del molde, configuración de buza y aplicación de campos electromagnéticos, para producir un acero de calidad.

Biografía del autor/a

Yordy González-Rondón*, Universidad de Oriente Barcelona, Venezuela

Universidad de Oriente Barcelona, Estado Anzoátegui - Venezuela, yordygonzalez@hotmail.com

José Eduardo Rengel-Hernández, Universidad de Oriente Barcelona, Venezuela

Universidad de Oriente Barcelona, Estado Anzoátegui - Venezuela, rengel66@gmail.com

Referencias bibliográficas

A. Nájera Bastidas, “Análisis del flujo de fluidos y transferencia de calor sobre la calidad de palanquillas de acero”, (Tesis Doctorado), Instituto Politécnico Nacional, México, 2010. https://tesis.ipn.mx/handle/123456789/9869

R. Mannheim, “Introducción general a la colada continua”, Revista Remetallica, no. 5, pp. 28-38. 1983. http://www.revistas.usach.cl/ojs/index.php/remetallica/article/view/1675

J. Calvo Muñoz, “Efecto de los elementos residuales e impurezas en la ductilidad y mecanismos de fragilización en caliente de un acero de construcción 0,23C – 0,9Mn – 0,13Si”, (Tesis Doctoral), Departamento de ciencia de los materiales e ingeniería, Metalurgía, Universitat Politècnica de Catalunya, Barcelona, 2006. https://www.tdx.cat/handle/10803/6048#page=1

B. Flores Garza, “Descripción del proceso de colada continua mediante CFD”, (Tesis de maestría), Universidad Autónoma de Nuevo León, 2010. http://eprints.uanl.mx/5669/

J. Coley Zapata, “Fundición continua, una oportunidad para mejorar la calidad de los hierros", Revista metalactual.com. Procesos, pp. 10-17. 2010. https://docplayer.es/17754952-Fundicion-continua-una-oportunidad-para-mejorar-la-calidad-de-los-hierros-procesos-ventajas-de-un-proceso-subestimado-jonathan-coley-zapata.html

R. Kumar, “Computational Fluid Dynamic (CFD) simulation for continuous casting process of steels", (Tesis de Maestría), Department of Metallurgical and Materials Engineerin, National Institute of Technology Rourkela, 2015. http://ethesis.nitrkl.ac.in/7397/

M. Aballe, “Colada continua y semicontinua de productos industriales”, en Conference: 2ª Jornada de Ciencia y Tecnología de Materiales. Barcelona 1992. https://www.researchgate.net/publication/271586961_Colada_continua_y_semicontinua_de_productos_industriales

A. Ramírez Cruz; O. Hernández Nava; A. Aldama Moreno; M. Ramírez Vargas, “Caracterización de fundentes para molde de colada continua de acero”, Acta Universitaria, vol. 17, no. 1, pp. 52-58. 2007. https://www.redalyc.org/articulo.oa?id=41617105

I. Hahn; M. Schneider; J. Terhaar; J. Jarolimeck; R. Sauermann, “Quality Prediction of Cast Ingots”. International Conference on Casting, Rolling and Forging ICRF, 2012. https://www.bing.com/search?q=Quality+Prediction+of+Cast+Ingots%E2%80%9D.+International+Conference+on+Casting%2C+Rolling+and+Forging+ICRF&cvid=aa2473c811894762998d8603e08ded4b&aqs=edge..69i57.388j0j1&pglt=2083&FORM=ANNTA1&PC=ACTS

F. Saldaña-Salas; E. Torres-Alonso; J. A. Ramos-Banderas; G. Solorio-Díaz; C. A. Hernández-Bocanegra, “Analysis of the Depth of Immersion of the Submerged Entry Nozzle on the Oscillations of the Meniscus in a Continuous Casting Mold”, Metals, vol. 9, no. 5, pp. 596, May. 2019. https://doi.org/10.3390/met9050596

J. Romo Castañeda, “Estudio de la formación de especies mineralógicas en el molde de colada continua de planchón delgado de acero”, (Tesis de maestría), Instituto politécnico nacional. Ciudad de México, 2011. https://tesis.ipn.mx/handle/123456789/8227

S. Kumar, “Mould thermal response and formation of defects in the continuous casting of steel billets”, (Tesis Doctoral), Departament of Metals and Materials Engineering, The University Of British Columbia. January 1996. http://hdl.handle.net/2429/4821

M. El-Anwar; G. Megahed; M. Bedewy; M. El-Sherbiny; N. Chazly, “Simulation of Fluid Flow In Thin Slab Casting Process”, Conference: 9th International Mining, Petroleum, and Metallurgical Engineering Conference (MPM), Cairo University, 2005. https://www.researchgate.net/publication/285232672_Simulation_of_fluid_flow_and_heat_transfer_in_thin_slab_casting_process

J. Belisario, “Evaluación de la efectividad del proceso de colada en la reducción de defectos de salpicaduras en las palanquillas producidas en la acería 150 TM de Sidor”, (Tesis de grado), Universidad Nacional Experimental de Guayana, 2011.https://docplayer.es/76751765-Ciudad-guayana-junio-de.html

K. Mills; P. Ramirez; P. Lee; B. Santillana; B. Thomas; R. Morales, “Looking into continuous casting mould”, Ironmaking and Steelmaking, vol. 41, no. 4, pp. 242-249, May. 2014. https://doi.org/10.1179/0301923313Z.000000000255

C. Cicutti, “Transferencia de calor en la colada continua de aceros, I parte, el molde”, Revista Metalurgia, Madrid, vol. 33, no, 5, pp. 333-344. 1977. https://doi.org/10.3989/revmetalm.1997.v33.i5.846

J. L. Enríquez Berciano; E. Tremps Guerra; S De E. de Bengy; D. Fernández Segovia, Colada del Acero, Monografías sobre Tecnología del Acero, Parte II. Madrid. 2009. http://oa.upm.es/1669/1/MONO_TREMPS_2009_01.pdf

V. Chang; P. Bolsaitis, “Simplified model for heat transfer and solidification in continuous casting”, Latin American Journal of Metallurgy and Materials, vol. 2, no. 2, pp. 130- 138,1982. https://www.semanticscholar.org/paper/S%C3%ADmplified-model-for-heat-transfer-and-in-casting-.-Chang-Bolsaitis/0b268e246214220e5c90854d642c969c3a41bd2b

M. A. Clavijo, “Consideraciones sobre la colada continua del acero”, Boletín de la Sociedad Española de Cerámica y Vidrio, vol. 13, no. 4, Jul. 1974. https://dialnet.unirioja.es/servlet/articulo?codigo=7599309

C. Real; L. Hoyos; F. Cervantes; R. Miranda; M. Palomar; J. González, “Influencia de la geometría de la buza sobre la transferencia de calor en un molde de colada continua de acero”, 8º Congreso Iberoamericano de Ingeniería Mecánica, Cusco, 2007. http://congreso.pucp.edu.pe/cibim8/pdf/29/29-33.pdf

B. G. Thomas, “Modeling of Continuous Casting”. Chapter 5. The AISE Steel Foundation, Pittsburgh, PA. 2003. http://ccc.illinois.edu/publications.html

B. A. Pereira; J. A. Castro; A. J. Da Silva; J. A. Duran, “Modelado del proceso de colada continua de aceros libres de intersticios”, Inf. tecnol, vol. 21, no. 6, 2010. http://dx.doi.org/10.4067/S0718-07642010000600002

D. Pengfei, “Numerical modeling of porosity and macrosegregation in continuous casting of steel”, (Thesis Doctor) University of Iowa, 2013. https://doi.org/10.17077/etd.h7xxkots

X. B. Zhang; W. Chen; L. Zhang, “A coupled model on fluid flow, heat transfer and solidification in continuous casting mold”, China Foundry. vol. 14, no. 5, pp. 416-420, Sep. 2017. https://doi.org/10.1007/s41230-017-7171-2

J. A. de Castro; B. Amaral Pereira; R. Sampaio de Souza; E. Mendes de Oliveira; I. L. Ferreira, “Numerical study of turbulent flows and heat transfer in coupled industrial-scale tundish of a continuous casting material in steel production”, Numerical Simulations in Engineering and Science, Chapter 16, 2018. https://www.intechopen.com/books/numerical-simulations-in-engineering-and-science/numerical-study-of-turbulent-flows-and-heat-transfer-in-coupled-industrial-scale-tundish-of-a-contin

A. Cwudzińsk; J. Jowsa; P. Przegrałek, “Interaction of liquid steel with mould flux in continuous casting bloom mould – numerical simulations and industrial experiences”, Arch. Metall. Mater., vol. 61, no 4, pp. 2013–2020. 2016. http://doi.org/10.1515/amm-2016-0325

J. K. Brimacombe; I. V. Samarasekera, “Fundamental Analysis of the Continuous Casting Process for Quality Improvements", Indo-US Workshop on Materials Processing, 179-222, 1988.

S. Kumar, “An Expert System to Diagnose Quality Problems i n the Continuous Casting of Steel Billets", (Tesis Maestría), Departament of metals and Matherials Engineering, The University of British Columbia, Vancouver, Canada, 1991. https://dx.doi.org/10.14288/1.0078575

J. K. Brimacombe; K. Sorimachi, “Crack Formation in the Continuous Casting of Steel", Metallurgical Transactions B., Sep. 1977, pp. 489-505. https://doi.org/10.1007/BF02696937

H. Arcos Gutierrez; G. Barrera Cardiel; R. Escudero García, “Simulación matemática para la optimización del patrón de flujo entregado por una buza para el molde de colada continua de planchón delgado”, Revista Materia, vol. 23, no. 2, Jul. 2018. http://dx.doi.org/10.1590/s1517-707620180002.0447

M. Vynnycky, “Continuous Casting”. Metals, vol. 9, no. 6, pp. 643, Jun. 2019. https://doi.org/10.3390/met9060643

J. Guirao-Goris; A. Olmedo Salas; E. Ferrer Ferrandis, “El artículo de revisión”. Revista Iberoamericana de Enfermería Comunitaria, en prensa. 2007. https://www.u-cursos.cl/medicina/2011/1/KI03010406032/1/material_docente/bajar?id_material=343053

M. Cué Brugueras, G. Díaz Alonso; A. Díaz Martínez; M. de la C Valdés Abreu, “El artículo de revisión”. Revista Cubana de Salud Pública; vol. 34, no. 4, Dic. 2008. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662008000400011

T. Saracevik; J. B. Wood, “Consolidation of information: a handbook on evaluation, restructuring and repackaging of scientific and technical information”. Pilot edition. PGI-81WS/ 16, 1981. https://eric.ed.gov/?id=ED226753

L. Cortés-Rico; G. Piedrahita-Solórzano, “Interacciones basadas en gestos: revisión crítica”, TecnoLógicas, vol. 22, pp. 119-132, 2019. https://doi.org/10.22430/22565337.1512

J. D. Ospina-Correa; J. G. Osorio-Cachaya; Á. M. Henao-Arroyave; D. A. Palacio-Acevedo; J. Giraldo-Builes, “Retos y oportunidades para la industria minera como potencial impulsor del desarrollo en Colombia”, TecnoLógicas, vol. 23, no. 50, 2021. https://doi.org/10.22430/22565337.1683

B. Thomas; G. Li; A. Moitra; D. Habing, “Analysis of Thermal and Mechanical Behavior of Copper Molds during Continuous Casting of Steel Slabs”, 80th Steelmaking Conference, Chicago, IL, April, 13-16. ISS Herty Award, 1997. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.997.6940&rep=rep1&type=pdf

S. Bockus, “Regulation of heat transfer in the horizontal continuous casting moulds”, Proceedings of the 4th WSEAS Int. Conf. on Heat Transfer, Thermal Engineering And Environment, Elounda, Greece, pp. 94-98, 2006. https://www.researchgate.net/publication/268178317_Regulation_of_Heat_Transfer_in_the_Horizontal_Continuous_Casting_Moulds

J. P. Pulgar Hormazábal, “Perfil de solidificación de acero bajo distintas condiciones operacionales en colada continua de palanquillas”, (Tesis de grado), Universidad de Concepción, Facultad de Ingeniería, 2018. http://repositorio.udec.cl/jspui/handle/11594/2953

R. J. Chung Carrero, “Efecto del enfriamiento del líquido y la solidificación primaria en la aleación Al-0,55%Fe-0,37% Si”, (Tesis de grado), Universidad Simón Bolívar, Sartenejas, 2004. https://silo.tips/download/efecto-del-enfriamiento-del-liquido-y-la-solidificacion-primaria-en-la-aleacion

M. G. Shen; Y. J. Liu; X. L. Zhu; Z. Y. Xiao; Y. C. Liu, “Study on the influence of new riser structure on the quality of steel ingot”, Metalurgija, vol, 58, no. (1-2), pp. 47-50. 2019. https://hrcak.srce.hr/206477

J. Barco, J. Palacios; C. Ojeda; M. Ojanguren, “Modelización global del proceso de colada continua”, Revista de Metalurgia., Vol. Extr. pp. 463-468, 2005. https://doi.org/10.3989/revmetalm.2005.v41.iExtra.1077

J. L. Acevedo Cabello, “Predicción microestructural de palanquillas de acero al carbono obtenidas por colada continua empleando una aproximación macro-micro”, (Tesis Doctoral), Universitat Politécnica de Catalunya, España, 2013. https://www.tdx.cat/handle/10803/116822

M. Shen; Z. Zang; K. Shu, “Mathematics simulation and experiments of continuous casting with strip feeding in mold”. Metalurgija, vol. 56, no. 3-4, pp. 315-318, 2017. https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=266727

R. Alberny; A. Leclercq; D. Aumary; M. Lahousse, “La lingotière de coulée continue de brames et son bilan thermique”, Revista Metalúrgica., vol. 73, no. 7-8, pp- 545-558. Jul. 1976. https://doi.org/10.1051/metal/197673070545

E. A. Mizikar, “Mathematical heat transfer model for solidification of continuously cast steel slabs”, The American Institute of Mining, Metallurgical, and Petroleum Engineers, PART XI – November.1967. https://www.onemine.org/document/abstract.cfm?docid=27385&title=PART-XI--November-1967--Papers--Mathematical-Heat-Transfer-Model-for-Solidification-of-Continuously-Cast-Steel-Slabs

Z. Peng; Y. ping Bao; Y. nan Chen; L. kang Yang; C. Xie; F. Zhang, “Effects of calculation approaches for thermal conductivity on the simulation accuracy of billet continuous casting”., Int. J. Miner. Metall. Mater., vol. 21, 18–25. Jan. 2014. https://doi.org/10.1007/s12613-014-0860-6

B.G. Thomas; I. V. Samarasekera; J. K. Brimacombe, “Comparison of numerical modeling techniques for complex, two-dimensional, transient heat-conduction problems”., Metall. Mater. Trans B., vol. 15, pp. 307–318, Aug. 1984. https://doi.org/10.1007/BF02667334

J. Szekely; V. Stanek, “On heat transfer and liquid mixing in the continuous casting of steel”., Metall. Trans., vol. 1, pp. 119–126. Apr. 1970. https://link.springer.com/article/10.1007/BF02819250

A. Ramírez-López; R. Aguilar-López; M. Palomar-Pardavé; M. A. Romero; D. Muñoz-Negrón, “Simulation of heat transfer in steel billets during continuous casting”., Int. J. Miner. Metall. Mater., vol. 17, pp. 403–416. Jul. 2010. https://doi.org/10.1007/s12613-010-0333-5

M. Vynnycky, “Applied mathematical modelling of continuous casting processes: A Review", Metals, vol. 8, no. 11, nov. 2018. https://doi.org/10.3390/met8110928

J. Madias, “Innovaciones en la colada continua de semiproductos para laminados largos”, Acero Latinoamericano., no. 567, pp. 26- 37, Mar, 2018. https://dialnet.unirioja.es/servlet/articulo?codigo=7125492

I. V. Samarasekera; D. L. Anderson; J. K. Brimacombe, “The Thermal Distortion of Continuous-Casting Billet Molds”, Metallurgical Transactions B., vol. l3B, pp. 91-104. Dec. 1980. https://doi.org/10.1007/BF02666960

I. V. Samarasekera; J. K. Brimacombe, “The Influence of Mold Behavior on the Production of Continuously Cast Steel Billets”, Metallurgical Transactions B. vol. l3, pp. 105-116. Dec. 1982. https://doi.org/10.1007/BF02666961

P. Ni; M. Ersson; L. Ingemar Jonsson; T. Zhang; P. Jönsson, “Numerical Study on the Influence of a Swirling Flow Tundish on Multiphase Flow and Heat Transfer in Mold”, Metals, vol. 8, no. 5, pp. 368, May. 2018. https://doi.org/10.3390/met8050368

R. Manojlovic, “Mathematical modeling of solidification Process of continuous casting steel slabs”, Journal of Chemical Technology and Metallurgy, vol. 48, no. 4, pp. 419-427, May. 2013. https://dl.uctm.edu/journal/node/j2013-4/13-Manojilovich%20%20419-427.pdf

B. Thomas; L. Zhang, “Mathematical Modeling of Fluid Flow in Continuous Casting”, ISIJ International, vol. 41, no. 10, pp. 1181–1193, Oct. 2001. https://doi.org/10.2355/isijinternational.41.1181

H. T. Abuluwefa; M. A. Al-Ahresh; A. Bosen, “Factors Affecting Solidification of Steel in the Mould During Continuous Casting of Steel Billets”, Procedures of the international mulconference of engineers and computer scientists, Hong Kong, Vol. II, 2012, pp. 14-16. https://www.researchgate.net/publication/290512678_Factors_Affecting_Solidification_of_Steel_in_the_Mould_during_Continuous_Casting_of_Steel_Billets

L. Bai; B. Wang; H. Zhong; J. Ni; Q. Zhai; J. Zhang, “Experimental and numerical simulations of the solidification process in continuous casting of slab”, Metals, vol. 6, no. 3, Mar. 2016. https://doi.org/10.3390/met6030053

E. I. Peterson, “Mold flux crystallization and mold thermal behavior”, (Tesis de Maestria), Missouri University of Science and Technology, 2017. https://scholarsmine.mst.edu/masters_theses/7656/

Y. Kong; D. Chen; Q. Liu; M. Long, “A Prediction Model for Internal Cracks during Slab Continuous Casting”, Metals, vol. 9, no. 5, pp. 587, May. 2019. https://doi.org/10.3390/met9050587

K. Tsutsumi; T. Nagasaka; M. Hino, “Surface roughness of solidified mold flux in continuous casting process.” ISIJ international, vol. 39, no. 11, pp. 1150-1159. 1999. https://doi.org/10.2355/isijinternational.39.1150

G. Krauss, “Solidification, segregation, and banding in carbon and alloy steels”, Metall Mater Trans B, vol. 34, no. 6, pp. 781–792, Dec. 2003. https://doi.org/10.1007/s11663-003-0084-z

A. Bermúdez, “Modelos matemáticos en solidificación, Aplicaciones en metalurgia”, Pub. Mat. UAB. no. 22, pp. 213- 222, 1980. https://doi.org/10.5565/publmat_22180_43

A. Grill; J. K. Brimacombe, “Influence of carbon content on rate of heat extraction in the mould of a continous-casting machine”, Ironmaking Steelmaking, vol. 3, no. 2, pp. 76-79, 1976. https://www.researchgate.net/publication/282396924_INFLUENCE_OF_CARBON_CONTENT_ON_RATE_OF_HEAT_EXTRACTION_IN_THE_MOULD_OF_A_CONTINUOUS-CASTING_MACHINE

H. Cui; K. Zhang; Z. Wang; B. Chen; B. Liu; J. Qing; Z. Li, “Formation of Surface Depression during Continuous Casting of High-Al TRIP Steel”. Metals, vol. 9, no. 2, pp. 204, Feb. 2019. https://doi.org/10.3390/met9020204

J. Saavedra Poma, “Influencia de la transferencia de calor en la formación de grietas internas”. (Tesis pregrado), Universidad Nacional de Ingeniería, Facultad de Ingeniería Geológica, Minera y Metalúrgica. Lima, Perú, 2009. https://1library.co/document/yevm657z-influencia-transferencia-calor-formacion-grietas-internas.html

I. V. Samarasekera, “Thermal distortion of continuous casting moulds”. (Tesis Doctoral) The University of British Columbia, Vancouver, Canada, 1980. https://link.springer.com/article/10.1007/BF02666960

J. Elfsberg, “Oscillation Mark Formation in Continuous Casting Processes”. (Tesis pregrado), Royal Institute of Technology SE-100 44 Stockholm, Sweden, 2003. http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A7585&dswid=9845

X. Sun; B. Li; H. Lu; Y. Zhong; Z. Ren; Z. Lei, “Steel/Slag Interface Behavior under Multifunction Electromagnetic Driving in a Continuous Casting Slab Mold”, Metals, vol. 9, no. 9, 983, Sep. 2019. https://doi.org/10.3390/met9090983

E. Brandaleze; E. González; M. Bentancour, “Mediciones del Porcentaje de Cristalinidad y Determinación del Comportamiento de Polvos Coladores en el Rango entre 1000 °C Y 1200 °C”, Revista Matéria, vol 8, no. 3, pp. 238 – 248. 2003. http://www.materia.coppe.ufrj.br/sarra/artigos/artigo10245/

A. Sorek; Z. Kudlinski, “The influence of the near-meniscus zone in continuous casting mold on the surface quality of the continuous casting ingots”. Archives of Metallurgy and Materials., vol. 57, no. 1 2012. https://doi.org/10.2478/v10172-012-0036-1

R. Chaudhary; G. Lee; B. G. Thomas; S. Cho; S. H. Kim; O. D. Kwon. “Effect of Stopper-Rod Misalignment on Fluid Flow in Continuous Casting of Steel”. Metallurgical and Materials Transactions B, vol. 42, no. 2, pp. 300-315, Feb. 2011. https://doi.org/10.1007/s11663-011-9478-5

A. Robles Álvarez; H. López García; P. Fernández-Cueto Arguedas; A. M. Díaz Fernández; L. F. Sancho Méndez “Predicción de CLOGGING en la colada continua mediante análisis del sistema de control de nivel”, In XXIX Jornadas de Automática, Tarragona, 2008. https://www.virtualpro.co/biblioteca/prediccion-de-clogging-en-la-colada-continua-mediante-analisis-del-sistema-de-control-de-nivel

D. Wu; S. Cheng; J. Zhao, “Performance comparison of three kinds of submerged entry nozzles for bloom mold”, J. Iron Steel Res. Int., vol. 15, pp. 315–321, 2008. https://www.researchgate.net/publication/295702791_Performance_Comparison_of_Three_Kinds_of_Submerged_Entry_Nozzles_for_Bloom_Mold

M. Long; H. Chen; D. Chen; S. Yu; B. Liang; H. Duan, “A Combined Hybrid 3-D/2-D Model for Flow and Solidification Prediction during Slab Continuous Casting”, Metals, vol. 8, no. 3, Mar. 2018. https://doi.org/10.3390/met8030182

H. Sun; L. Li; C. Liu, “Novel Opposite Stirring Mode in Bloom Continuous Casting Mould by Combining Swirling Flow Nozzle with EMS”, Metals, vol. 8, no. 10, pp. 842, 2018. https://doi.org/10.3390/met8100842

H. Sun; J. Zhang, “Macrosegregation improvement by swirling flow nozzle for bloom continuous castings”, Metall. Mater. Trans. B, vol. 45, pp. 936–946, Dec. 2014. https://doi.org/10.1007/s11663-013-9999-1

P. Wang et al., “Initial Transfer Behavior and Solidification Structure Evolution in a Large Continuously Cast Bloom with a Combination of Nozzle Injection Mode and M-EMS”, Metals, vol. 9, no. 10, pp. 1083, Oct. 2019. https://doi.org/10.3390/met9101083

C. Real; L. Hoyos; F. Cervantes; R. Miranda; M. Palomar; J. González, “Dinámica de fluidos en una Buza Bifurcada y su influencia en un molde de colada continua”, 8º Congreso Iberoamericano de Ingeniería Mecánica, Cusco, 2007. http://congreso.pucp.edu.pe/cibim8/pdf/16/16-16.pdf

K. Rackers; B. Thomas, “Clogging in Continuous Casting Nozzles”, 78th Steelmaking Conference Proceedings, Nashville, TN, 1995. http://ccc.illinois.edu/PDF%20Files/Publications/95_ISS%5b1%5d.Conf.paper_post.pdf

M. H. Zare; A. H. Meysami; S. Mahmoudi; M. Hajisafari; M. MazarAtabaki. “Simulation of fluid flow and solididification in the funnel type crystalizer of thin slab continuous cast”. Orient J Chem, vol. 29, no. 4, Jan. 2014. http://www.orientjchem.org/vol29no4/simulation-of-fluid-flow-and-solididification-in-the-funnel-type-crystalizer-of-thin-slab-continuous-cast/

D. Jiang; M. Zhu; L. Zhang, “Numerical Simulation of Solidification Behavior and Solute Transport in Slab Continuous Casting with S-EMS”, Metals, vol. 9, no. 4, pp. 452, Apr. 2019. https://doi.org/10.3390/met9040452

M. Guimarães; A. L. Vasconcellos da Costa e Silva, “Evaluating segregation in HSLA steels using computational thermodynamics”, Journal of Materials Research and Technology, vol. 4, no. 4, pp. 353–358, Dec. 2015. https://doi.org/10.1016/j.jmrt.2015.06.002

W. Zhang; S. Luo; Y. Chen; W. Wang; M. Zhu. “Numerical Simulation of Fluid Flow, Heat Transfer, Species Transfer, and Solidification in Billet Continuous Casting Mold with M-EMS”. Metals, vol. 9, no. 1, pp. 66. Jan. 2019. https://doi.org/10.3390/met9010066

M. C. Flemings, “Solute Segregation”, Encyclopedia of Materials: Science and Technology (Second Edition). pp. 8753-8755, 2001. https://doi.org/10.1016/B0-08-043152-6/01566-7

P. Emtage; K. Wunnenberg; T. Hatonen; M. Bobadilla; J. Llanos; M. De Santis, “Improved Control of Segregation in Continuous Casting and Hot Rolling Processes”, European Commission, Luxembourg, International, reporte EUR 20886 En, pp. 1-403, 2003. https://op.europa.eu/en/publication-detail/-/publication/c3a31e47-4788-46f9-9149-44417775c678

R. Niu; B. Li; Z. Liu; X. Li, “Melting of Moving Strip during Steel Strip Feeding in Continuous Casting Process”, Steel research international, vol. 89, no. 5, 2-13. Feb. 2018. https://doi.org/10.1002/srin.201700407

M. Vynnycky; S. Saleem; K. M. Devine; B. J. Florio; S. L. Mitchell; S. B. G. O’Brien, “On the formation of fold-type oscillation marks in the continuous casting of steel”, R. Soc. open sci. vol. 4, no. 6. Jun. 2017. https://doi.org/10.1098/rsos.170062

R. López; J. Usart; D. Cerutti, “Medición de nivel en los moldes de colada continua”. 46° Seminario de Aceria Internacional. ABM Week, Rio de Janeiro, 2015. https://docplayer.es/80666654-Medicion-de-nivel-en-los-moldes-de-colada-continua.html

X. Yan; B. Jia; Q. Wang; S. He; Q. Wang, “Mold nonsinusoidal oscillation mode and its effect on slag infiltration for lubrication and initial shell growth during steel continuous casting”, Metals, vol. 9, no. 4, pp. 418, Apr. 2019. https://doi.org/10.3390/met9040418

H. Wu; Y. Xu; Z. Huo; F. Yue; P. Lu, “Physical modeling of oscillation Effect on fluid flow in mold”, Metalurgija vol. 54, no. 3, pp. 465-468, 2015. https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=194437

J. Sengupta; B. G. Thomas, “Visualization of Hook and Oscillation Mark Formation Mechanism in Ultra-Low Carbon Steel Slabs During Continuous Casting”. JOMe, Journal of Metals – electronic edition, pp. 1- 21, Dec. 2006. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.657.5567

J. Cibulka; R. Krzok; R. Hermann; D. Bocek; J. Cupek; K. Michalek, “Impact of oscillation parameters on surface quality of cast billets”, Arch. Metall. Mater. vol. 61, no 1, pp. 283–288, 2016. https://doi.org/10.1515/amm-2016-0054

O. Pütz; O. Breitfeld; S. Rödl. “Investigations of Flow Conditions and Solidification in Continuous Casting Moulds by Advanced Simulation Techniques”. Steel Research International, vol. 74, no. 11-12, pp. 686–692. 2003. https://onlinelibrary.wiley.com/doi/abs/10.1002/srin.200300251

Q. Fang; H. Ni; B. Wang; H. Zhang; F. Ye, “Effects of EMS Induced Flow on Solidification and Solute Transport in Bloom Mold”, Metals, vol. 7, no. 3, pp. 72, Feb. 2017. https://doi.org/10.3390/met7030072

L. Hui-cheng; L. Yu-xiang; Z. Yun-hu; L. Zhen; Z. Qi-jie Zhai, “Effects of hot top pulsed magneto-oscillation on solidification structure of steel ingot”, China Foundry, vol. 15, no. 2, pp. 110-116, Mar, 2018. https://doi.org/10.1007/s41230-018-7198-z

B. Wang; Z. Yang, X. Zhang, Y. Wang, C. Nie, Q. Liu; H. Dong, “Analysis of the effects of electromagnetic stirring on solidification structure of bearing steel”, Metalurgija, vol. 54, no. 2, pp. 327-330, 2015. https://hrcak.srce.hr/128953

Cómo citar
[1]
Y. . González-Rondón y J. E. . Rengel-Hernández, «Comportamiento termo fluidodinámico del acero en un molde de colada continua: una revisión», TecnoL., vol. 24, n.º 51, p. e1856, jun. 2021.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2021-06-11
Sección
Artículos de revisión

Métricas

Crossref Cited-by logo