Simulación de una antena microcinta rectangular espiral multibanda para la aplicación de captación de energía de radiofrecuencia

Palabras clave: Antenas de microcinta, ranuras de microcinta, patrón de radiación, frecuencia de resonancia

Resumen

El presente estudio realizó un análisis de la influencia que ejercen las variaciones del grosor del sustrato dieléctrico y de la posición de las ranuras de microcinta creadas en el parche radiante de una antena de microcinta. El trabajo presentó la simulación mediante el software de optimización automática CST Studio, de una antena para captura de energía de radiofrecuencia empleando el substrato ARLON AD450 con constante dieléctrica de 4.5, pérdidas tangenciales de 0.035 y espesor de 3 mm. En este diseño se aplicaron varias ranuras hasta formar una espira cuadrada. Los resultados obtenidos evidenciaron que al aumentar el espesor del sustrato que separa el plano de tierra del parche radiante, se produce una disminución en las pérdidas de retorno del parámetro y al mismo tiempo se da un aumento en la ganancia de la antena. La creación de ranuras, el grosor y la ubicación de estas en el parche radiante producen un desplazamiento en la frecuencia de resonancia. Asimismo, el arreglo presentado permite frecuencias de resonancia alrededor de 1.6 GHz, 2.38 GHz, 3.38 GHz y 4.16 GHz, con una ganancia entre 2.48 dB y 7.66 dB. Este diseño de antena permitió mejoras en ganancia y en el patrón de radiación. La creación de ranuras en el parche radiante modificó la distribución de corriente de superficie de la antena y generó nuevas frecuencias de resonancia. Los espacios de aire creados entre el cobre y el substrato mejoraron el rendimiento de la antena, del mismo modo que el espacio ejercido por el substrato entre el plano de tierra y el parche radiante disminuyeron las pérdidas de ganancia en la antena debido a la reducción del cobre cuando se realizan estas ranuras. La antena propuesta presenta un comportamiento multibanda inmediatamente se agregan ranuras en el parche. La evaluación de substratos y estructuras son útiles para el desarrollo de antenas de microcinta integradas para sistemas de recolección de energía de radiofrecuencia.

Biografía del autor/a

Edison Andrés Zapata-Ochoa*,  Instituto Tecnológico Metropolitano, Colombia

 Instituto Tecnológico Metropolitano, Medellín-Colombia, edisonzapata110337@correo.itm.edu.co

Francisco López-Giraldo, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, franciscolopez@itm.edu.co

Germán David Goéz, Instituto Tecnológico Metropolitano, Colombia

 Instituto Tecnológico Metropolitano, Medellín-Colombia, germangoez@itm.edu.co

Referencias bibliográficas

H. F. Bermúdez-Orozco; E. Astaiza-Hoyos; L. F. Muñoz-Sanabria, “Cambios del patrón de radiación en arreglos lineales de dipolos de microcinta a 2,4 GHz en presencia de elementos parásitos,” TecnoLógicas, vol. 18, no. 35, pp. 21-34, Aug. 2015. https://doi.org/10.22430/22565337.185

J. Chen; K. Fai Tong; A. Al-Armaghany; J. Wang, “A Dual-Band Dual-Polarization Slot Patch Antenna for GPS and Wi-Fi Applications,” IEEE Antennas Wirel. Propag. Lett., vol. 15, pp. 406–409, Jun. 2015. https://doi.org/10.1109/lawp.2015.2448536

H. Elsadek; D. M. Nashaat, “Multiband and UWB V-shaped antenna configuration for wireless communications applications,” IEEE Antennas Wirel. Propag. Lett., vol. 7, pp. 89–91, May. 2008. https://doi.org/10.1109/lawp.2007.900953

S. Liu; W. Wu; D. Gang Fang, “Single-Feed Dual-Layer Dual-Band E-Shaped and U-Slot Patch Antenna for Wireless Communication Application,” IEEE Antennas Wirel. Propag. Lett., vol. 15, no. 2, pp. 468–471, Jul. 2015. https://doi.org/10.1109/lawp.2015.2453329

M. Rostamzadeh; S. Mohamadi; J. Nourinia; Ch. Ghobadi; M. Ojaroudi, “Square monopole antenna for UWB applications with novel rod-shaped parasitic structures and novel V-shaped slots in the ground plane,” IEEE Antennas Wirel. Propag. Lett., vol. 11, pp. 446–449, Apr. 2012. https://doi.org/10.1109/lawp.2012.2193866

N. M. Awad; M. K. Abdelazeez, “Multislot microstrip antenna for ultra-wide band applications,” J. King Saud Univ. Sci., vol. 30, no. 1, pp. 38–45, Jan. 2018. https://doi.org/10.1016/j.jksues.2015.12.003

S. Weigand; G. H. Huff; K. H. Pan; J. T. Bernhard, “Analysis and design of broad-band single-layer rectangular U-slot microstrip patch antennas,” IEEE Trans. Antennas Propag., vol. 51, no. 3, pp. 457–468, May. 2003. https://doi.org/10.1109/tap.2003.809836

M. Joler; J. Kucan, “Impact of Slot Parameters on the Three Resonant Frequencies of a Rectangular Microstrip Antenna: Study of the impact of the slot length, width, and position,” IEEE Antennas Propag. Mag., vol. 57, no. 4, pp. 48–63, Aug. 2015. https://doi.org/10.1109/map.2015.2453888

S. Chhawchharia; S. Kumar Sahoo; M. Balamurugan; S. Sukchai; F. Yanine, “Investigation of wireless power transfer applications with a focus on renewable energy,” Renew. Sustain. Energy Rev., vol. 91, pp. 888–902, Aug. 2018. https://doi.org/10.1016/j.rser.2018.04.101

T. Benyetho; J. Zbitou; L. El Abdellaoui; H. Bennis; A. Tribak, “A New Fractal Multiband Antenna for Wireless Power Transmission Applications,” Act. Passiv. Electron. Components, vol. 2018, pp. 1–10, Mar. 2018. https://doi.org/10.1155/2018/2084747

H. Joon Kim; H. Hirayama; S. Kim; K. Jin Han; R. Zhang; J. Woong Choi, “Review of Near-Field Wireless Power and Communication for Biomedical Applications,” IEEE Access, vol. 5, pp. 21264–21285, Sep. 2017. https://doi.org/10.1109/access.2017.2757267

R. Hussein; H. A. Atallah; S. Hekal; A. B. Abdel-Rahman, “A new design for compact size wireless power transfer applications using spiral defected ground structures,” Radioengineering, vol. 27, no. 4, pp. 1032–1037, 2018. https://doi.org/10.13164/re.2018.1032

L. G. Tran; H. K. Cha;W. T. Park, “RF power harvesting: a review on designing methodologies and applications,” Micro Nano Syst. Lett., vol. 5, Feb. 2017. https://doi.org/10.1186/s40486-017-0051-0

H. S. Deshpande; K. J. Karande, “A planar microstrip RF energy harvester 3D cube antenna for multiple frequencies reception,” in Conference on Advances in Signal Processing, CASP 2016, Pune, 2016, pp. 327–331. https://doi.org/10.1109/casp.2016.7746189

T. A. Elwi, “Novel UWB printed metamaterial microstrip antenna based organic substrates for RF-energy harvesting applications,” AEU - Int. J. Electron. Commun., vol. 101, pp. 44–53, Mar. 2019. https://doi.org/10.1016/j.aeue.2019.01.026

N. Shariati; W. S. T. Rowe; K. Ghorbani, “Highly sensitive rectifier for efficient RF energy harvesting,” 2014 44th European Microwave Conference, Rome, 2014, pp. 1190–1193. https://doi.org/10.1109/eumc.2014.6986654

J. M. Barcak; H. P. Partal, “Efficient RF energy harvesting by using multiband microstrip antenna arrays with multistage rectifiers,” in 2012 IEEE Subthreshold Microelectronics Conference, SubVT, Waltham, 2012. https://doi.org/10.1109/subvt.2012.6404327

Y. Zhou; C. Huerta; J. Hinojosa, “Three-band ambient wireless energy harvesting system,”2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, 2016, pp. 613-614. https://doi.org/10.1109/aps.2016.7696015

Z. Popovic et al., “Scalable RF energy harvesting,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 4, pp. 1046–1056, Feb. 2014. https://doi.org/10.1109/tmtt.2014.2300840

L. L. Pon; S. K. Abdul Rahim; C. Yen Leow; M. Himdi; M. Khalily, “Displacement-tolerant printed spiral resonator with capacitive compensated-plates for non-radiative wireless energy transfer,” IEEE Access, vol. 7, pp. 10037–10044, Jan. 2019. https://doi.org/10.1109/access.2019.2891015

A. Rajagopalan; A. K. Ramrakhyani; D. Schurig; G. Lazzi, “Improving power transfer efficiency of a short-range telemetry system using compact metamaterials,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 4, pp. 947–955, Feb. 2014. https://doi.org/10.1109/tmtt.2014.2304927

J. Zhang; X. Yuan; C. Wang; Y. He, “Comparative Analysis of Two-Coil and Three-Coil Structures for Wireless Power Transfer,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 341–352, Feb. 2016. https://doi.org/10.1109/tpel.2016.2526780

M. Fantuzzi; D. Masotti; A. Costanzo, “A Novel Integrated UWB-UHF One-Port Antenna for Localization and Energy Harvesting,” IEEE Trans. Antennas Propag., vol. 63, no. 9, pp. 3839–3848, Jul. 2015. https://doi.org/10.1109/tap.2015.2452969

E. Gómez Rodríguez; I. Rodríguez Prieto; F. Marante Rizo; L. Rizo Salas, “Estudio de la variación de diferentes parámetros en antenas de microcinta AAPC,” Ing. Electrónica, Automática y Comun., vol. 34, no. 1, pp. 27–39, Jan. 2013. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1815-59282013000100003

M. Kumar Khandelwal; B. Kumar Kanaujia; S. Kumar, “Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends,” International Journal of Antennas and Propagation, vol. 2017, Feb. 2017. https://doi.org/10.1155/2017/2018527

N. Singh; B. K. Kanaujia; M. T. Beg; Mainuddin; T. Khan; S. Kumar, “A dual polarized multiband rectenna for RF energy harvesting,” AEU - Int. J. Electron. Commun., vol. 93, pp. 123–131, Sep. 2018. https://doi.org/10.1016/j.aeue.2018.06.020

A. Benayad; M. Tellache, “A compact energy harvesting multiband rectenna based on metamaterial complementary split ring resonator antenna and modified hybrid junction ring rectifier,” Int. J. RF Microw. Comput. Eng., vol. 30, no. 2, pp. 1–11, Feb. 2020. https://doi.org/10.1002/mmce.22031

A. E. Hidalgo; F. M. Rizo, “Microstrip antenna with metamaterial hybrid structure for 2.4 GHz,” Ingeniare, vol. 27, no. 1, pp. 22–33, Mar. 2019. https://doi.org/10.4067/s0718-33052019000100022

A. A. Deshmukh; K. P. Ray, “Formulation of resonance frequencies for dual-band slotted rectangular microstrip antennas,” IEEE Antennas Propag. Mag., vol. 54, no. 4, pp. 78–97, Sep. 2012. https://doi.org/10.1109/map.2012.6309159

J. Balcells; Y. Damgaci; B. A. Cetiner; J. Romeu; L. Jofre, “Polarization reconfigurable MEMS-CPW antenna for mm-wave applications,” EuCAP 2010 - 4th Eur. Conf. Antennas Propag., Barcelona, 2010. pp. 1-856. https://ieeexplore.ieee.org/abstract/document/5505012

F. Sarrazin; S. Pflaum; C. Delaveaud, “Radiation Efficiency Improvement of a Balanced Miniature IFA-Inspired Circular Antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 1309–1312, Nov. 2016. https://doi.org/10.1109/lawp.2016.2633308

B. Rao Perli; A. Maheswara Rao, “Analysis of microstrip patch antenna with loading slot using characteristic modes,” 2020 7th Int. Conf. Smart Struct. Syst. ICSSS, Chennai, 2020, pp. 2–5. https://doi.org/10.1109/icsss49621.2020.9202029

S. Á. Jaramillo-Flórez, “Filtros a Frecuencias de Microondas con Doble Resonador en Anillo Elípticos Confocales,” TecnoLógicas, p. 517- 528, Nov. 2013. https://doi.org/10.22430/22565337.345

M. Moubadir; I. Badaoui; N. A. Touhami; M. Aghoutane; M. El Ouahabi, “A new circular polarization dual feed microstrip square patch antenna using branch coupler feeds for WLAN/HIPERLAN applications,” Procedia Manufacturing, vol. 32, pp. 702–709, 2019. https://doi.org/10.1016/j.promfg.2019.02.274

C. Wnng; K.Chang, “A novel CP patch antenna with a simple feed structure,” IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C, Salt Lake City, 2002, pp. 1000–1003. https://doi.org/10.1109/aps.2000.875389

T. Kingsuwannaphong; V. Sittakul, “Compact circularly polarized inset-fed circular microstrip antenna for 5 GHz band,” Comput. Electr. Eng., vol. 65, pp. 554–563, Jan. 2018. https://doi.org/10.1016/j.compeleceng.2017.02.027

Cómo citar
[1]
E. A. . Zapata-Ochoa, F. . López-Giraldo, y G. D. Goéz, «Simulación de una antena microcinta rectangular espiral multibanda para la aplicación de captación de energía de radiofrecuencia», TecnoL., vol. 24, n.º 51, p. e1924, jul. 2021.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2021-07-12
Sección
Artículos de investigación

Métricas