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Abstract: This article advocates the benefits of a sociological perspective 
for the philosophy of mathematical practice. Drawing from the literature 
of the sociology of sciences, it defends a community-centered approach of 
the study of mathematical practice and assesses the role of the notion of 
metamathematics in mathematical change and in stabilized mathematical 
practices. It relies on the case study of the emergence of geometric control 
theory at the beginning of the 1970s and of the citational practices associated 
to the community of control theory since the mid-1990s. The case study 
shows that the introduction of geometric tools in control theory at the end 
of the 1960s induced a change in the metamathematical views that control 
theorists had on their objects. It is then demonstrated how membership to 
the community of control theory shapes the production and the reception 
of the theorems of Stefan, Sussmann and Nagano. Interpreting the historical 
development and citational practices of this community through the 
perspective of metamathematics, this paper concludes by discussing the 
role of the orbit theorem in control theory, both as a cognitive label and as a 
social marker of membership to this community.

Keywords: Co-citation analysis, control theory, mathematical practice, 
metamathematics, scientific communities.

Resumen: aprovechando la literatura de la sociología de la ciencia, este 
artículo aboga por los beneficios de una perspectiva sociológica en la 
filosofía de la práctica matemática. Para ello, propone un enfoque de 
la práctica matemática que se fundamenta en la noción de comunidad 
matemática, al tiempo que evalúa el papel de la noción de metamatemática 
en el cambio matemático y en las prácticas matemáticas estabilizadas. Su 
punto de partida es un estudio de caso: la aparición de la teoría del control 
geométrico a principios de los años 70 y las prácticas de citación asociadas 
a la comunidad de la teoría del control desde mediados de los 90. En él se 
expone que la introducción de las herramientas geométricas en la teoría 
del control a finales de los años 60 condujo a un cambio en las opiniones 
metamatemáticas que los teóricos del control tenían de sus objetos. A 
continuación, se muestra cómo la pertenencia a la comunidad de la teoría 
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del control da forma a la producción y recepción de los teoremas de Štefan, 
Sussmann y Nagano. Por último, la interpretación del desarrollo histórico 
y de las prácticas de citación de esta comunidad, a través de la perspectiva 
de la metamatemática, concluye con una discusión del papel del teorema 
de la órbita en la teoría del control, tanto como etiqueta que designa un 
determinado contenido cognitivo, como marcador social de pertenencia a 
esa comunidad.

Palabras clave: análisis de co-citación, teoría del control, práctica 
matemática, metamatemáticas, comunidades científicas.
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INTRODUCTION
To Robert Hermann (1931–2020)

Beginning in the second half of the 20th century, some philosophers of mathematics 
have advocated a more 'practice oriented' approach to their field and have 
developed what is now called the philosophy of mathematical practice. This intellectual 
movement argues that restricting philosophy of mathematics to foundationalism 
and logicism not only caricatures the production of mathematical knowledge, 
but also overlooks important philosophical questions that would benefit from 
being investigated through the study of praxis. Mancosu (2008), one of the main 
proponents of this approach, stated at the end of the 2000s that:

Attention to mathematical practice is a necessary condition for a renewal of 
the philosophy of mathematics. We are not simply proposing new topics for 
investigation but are also making the claim that these topics cannot effectively 
be addressed without extending the range of mathematical practice one needs to 
look at when engaged in this kind of philosophical work. Certain philosophical 
problems become salient only when the appropriate area of mathematics is taken 
into consideration (p. 2).

Although the epistemic stance that accepts mathematical practice as relevant to 
philosophical inquiries has its roots in the mid-twentieth century, the number of 
contributions has only flourished in the last twenty years. Indeed, the impressive 
outpouring of papers, monographs, conferences, and collective volumes, as well 
as the creation of the Association for the Philosophy of Mathematical Practice in 2009, 
affirm the position of the philosophy of mathematical practice as a legitimate 
subfield of the philosophy of mathematics.1

However, although philosophers of mathematical practice advocate a philosophical 
approach that interacts with other disciplines, the integration of sociological 
concepts and methods has been scarce. This may be explained by the embryonic 
state of the sociology of mathematics, despite early works by sociologists Bloor 
(1973, 1976) and Restivo (1988), and some recent but scattered contributions 
(MacKenzie, 1999; Heintz, 2000; Rosental, 2008; Zarca, 2012). It seems to us that 
this lack of recognition of sociology in the philosophy of mathematical practice 
1 See Carter (2019) and Hamami and Morris (2020) for detailed introductions to this topic.
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is partly due to a cognitive-oriented stance that is prevalent among philosophers 
of mathematics. Indeed, in the last twenty years, numerous publications have 
addressed the relationship between cognitive sciences and mathematical 
knowledge (Netz, 1999; Lakoff & Núñez, 2001; Leng et al., 2007; Pease et al., 
2013; Bangu, 2018). A recent monograph notes this trend in the philosophy of 
mathematical practice, which favors a cognitive and agent-based approach 
(Ferreirós, 2016). In comparison, little has been done to integrate sociological 
approaches with the philosophy of mathematical practice, even where it would 
seem legitimate.

This article highlights how the philosophy of mathematical practice would 
benefit from a sociological perspective. For instance, sociological concepts such 
as scientific communities are of central importance for understanding collective 
mathematical practices. Based on the literature in the sociology of science, a 
community-centered approach to the study of mathematical practice will be 
advocated first. It will then be explained how this approach is particularly suited 
to outline the role of metamathematics, a philosophical concept used as placeholder 
for the opinions, views and positions which mathematicians maintain with 
respect to their practice (Kitcher, 1984). It has been considered that change in 
metamathematics is often associated with 'revolutionary' changes in mathematics 
(Dunmore, 1995), as exemplified by the emergence of modern algebra at the 
beginning of the 20th century (Corry, 2004). In contrast, much less has been said on 
the role of metamathematics in stabilized mathematical practices. The emergence 
of geometric control theory, and one of the founding theorems of this community: 
the orbit theorem, will be used as a case study to show the need to connect the 
notion of metamathematics to that of scientific communities.

In the first part of the case study, it is shown how that the introduction of 
geometric tools in control theory in the 1960s precipitated a change in the 
metamathematical perspective, resulting in the emergence and grow of a new 
practice. This mathematical community – later called 'geometric control theory' 
– has the particularity of merging elements from differential geometry and from 
applied mathematics to solve problems about systems of nonlinear differential 
equations. A founding element of this community is the so-called orbit theorem: 
although this label only appeared in the 1980s, it refers to a statement originally 
formulated – and proved independently – by control theorist Sussmann (1973b) 
and differential geometer Stefan (1974b). Although the content of their respective 
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contributions is quasi-identical, it appears that their presentations differ in a 
way that parallels their respective disciplinary affiliation. Then, an analysis of 
contemporary citational practices demonstrates that the identification of the 
work of Stefan and Sussmann –as well as that of another geometer, Tadashi 
Nagano – with the label 'orbit theorem' is mostly restricted to the community 
of control theory. The article concludes by discussing how metamathematical 
views associated to the collective practice of a mathematical community shape 
the production and the receptions of mathematical knowledge. Relying on both 
quantitative and qualitative methods, the case study illustrates how sociological 
perspectives are not only relevant but also fruitful to research in the philosophy 
of mathematical practice.

MATHEMATICAL COMMUNITIES AND THE INTERPLAY OF THEIR 
PRACTICES

A sociological approach to mathematical practice
Mathematical research is a collective enterprise ranging from training under 
the supervision of a mentor, to writing and publishing papers as a professional 
mathematician. However, these institutional aspects are merely the tip of the 
iceberg, for knowledge acquisition is mediated through various instances: 
discussions with colleagues, books, talks, etc., all of which are socially shaped 
or constrained. Moreover, learning the implicit norms regulating a domain of 
mathematics and constructing a professional ethos can only be made through 
the succession of social experiences lived by the mathematicians. Thus, to study 
mathematical practice, it seems legitimate to adopt a sociologically oriented 
perspective focusing on communities of researchers.

This position is illustrated by the work of sociologist Rosental (2008). In his 
monograph, he studies a controversy in logic triggered by the uncertainty 
surrounding the proof of Elkan's theorem in the 1990s. The unfolding of the debates 
among logicians reveals how a theorem is produced by its scientific community 
and how it is not reducible to a mere cognitive content discussed according to 
purely individual dynamic. Rosental (2008) emphasizes the collective dimension 
of the process by which the theorem achieved the status of certified knowledge. 
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His work is a rare attempt of studying the production of theoretical knowledge 
from an anthropological perspective. In particular, he warns the reader of the 
danger of invoking the immateriality of logico-mathematical knowledge, that 
would be exclusively localized in the minds of the scientists. Rather, he argues 
that a relevant approach to the understanding of scientific practices in logic 
and mathematics should rely on a social and material analysis of the debates. 
For example, in his case study, he notices the importance of the role of online 
forums in giving a collective meaning to Elkan's statements, by enabling the 
transmission of theoretical, immaterial arguments. The study of material supports 
as conveyors of immaterial knowledge has been further investigated in another 
anthropological study, led by Barany and MacKenzie (2014), in which they 
provide an ethnographic account of how blackboards structure the exchange of 
immaterial theoretical knowledge in the mathematics department.

This anthropological approach not only invites us to focus on the material 
dimensions of scientific research, but also to study mathematical practice at the 
level of communities of researchers. Following the historian of mathematics 
Dahan-Dalmedico (1994), Rosental (2008) defends the idea of developing a social 
history of mathematics, which would not be limited to the history of a concept 
or the work of an individual, but would rather include "the study of a scientific 
milieu, a community, a set of scientific productions, in order to apprehend a 
'site', a geography of works, the emergence of a discipline, and the role of leading 
academic figures" (p. 37). Barany and MacKenzie support Rosental's position 
by observing that the study of mathematical practice relies mostly on historical 
and philosophical accounts of settled mathematics, thus lacking an adequate 
sociological treatment of ongoing research (Barany & MacKenzie, 2014). Indeed, 
although the influence of social factors on scientific production has been widely 
discussed in the sociology of scientific knowledge – for example see (Knorr-Cetina 
& Mulkay, 1983; Barnes et al., 1996) – and has found some echoes in the history of 
mathematics (Bos & Mehrtens, 1977; Gispert, 2000), contributions to the sociology 
of mathematics have remained scarce.

In the history of mathematics, interest in the role of collective practice and in 
mathematical communities has attracted more and more attention in the last 
twenty years. For example, regarding mathematical physics, Warwick (2003) 
described how local factors impacted the reception of Einstein's theory of relativity 
at Cambridge. A recent sociohistorical assessment of the notion of mathematical 
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community is the study led by Gauthier (2007, 2009) on mathematicians working 
on the geometry of numbers in the first half of the 20th century. Another important 
account of international collaborative work in mathematics has been made by 
Barany (2018), on the emergence of Schwartz' theory of distributions. Finally, a 
recent collective volume on the institutional and social history of mathematical 
communities in the interwar period has just been published (Mazliak & Tazzioli, 
2021).

However, in the history and the sociology of sciences, the notion of scientific 
community has generated a large body of literature since the 1960s (Ben-David 
& Collins, 1966; Kuhn, 1970; Crane, 1972; Mullins, 1972; Edge & Mulkay, 1976; 
Lemaine et al., 2012; Knorr Cetina, 1999; Frickel & Gross, 2005). These contributions 
focus either on institutional aspects or on the more social aspects which define 
scientific communities. For example, in his discontinuous account of scientific 
change, Kuhn (1970) identifies scientific communities as communities of views, 
practice and commitments. To each community he associates a paradigm – or a 
disciplinary matrix in his later work – since this notion should much better reflect 
its relationship with the scientific community to which it belongs. Kuhn borrowed 
this perspective from Fleck (1979), who introduced the notions of thought collective 
(Denkkollektiv) and of thought style (Denkstil). Moreover, he acknowledges the 
multi-level aspect of scientific communities – smaller specialties inside larger 
disciplines – and emphasizes that his model should fit this taxonomy (Kuhn, 
1977, pp. 296-297).

Although philosophers of mathematics have discussed the relevance of adapting 
the notion of disciplinary matrix to describe mathematical change (Mehrtens, 
1976), they do not seem to have specified how it would be articulated with 
the multi-level taxonomy of mathematical communities. Except in a few cases 
(Van Kerkhove & Van Bendegem, 2004), most famous attempts of describing 
mathematical practice occurred either at the global level (Kitcher, 1984) or at 
the individual level (Ferreirós, 2016). While it is certainly necessary to study the 
evolution of mathematicians' individual practices, a sociological approach would 
enable to explore practices associated to different communities. This paper adopts 
the view of a socio-historical perspective on mathematical practice relying on 
the notion of mathematical community and on their multi-level taxonomy. The 
notion of metamathematics crafted by the philosophy of mathematics allows to 
ground practices in the notion of mathematical communities.



9

Vol. 13 • Núm. 25 / jul-dic / 2021

Sylvain Lavau

The role of metamathematics in mathematics
One of the earliest attempts to assess the validity of Kuhn's model in describing 
mathematical change was led by philosopher Mehrtens (1976), who concluded 
that normal science, anomalies, and crisis occur in mathematics, but that the 
concept of revolution should be adapted for mathematics. Philosopher Philip 
Kitcher also defended the idea that Kuhn's theory would apply to mathematics 
with minor modifications. In his book The Nature of Mathematical Knowledge, 
Kitcher (1984) provided a model for mathematical growth along Kuhn’s lines. 
Kitcher's idea is to replace the notion of disciplinary matrix by the notion of 
mathematical practice. It can be described, at a given time, by a set ⟨L, S, R, Q, M⟩ of 
five components: a language L in use among mathematicians; a set S of accepted 
statements, propositions and theorems; a set R of accepted reasonings, proofs 
and arguments which justify the accepted statements; a set Q of mathematical 
questions considered as important by the community: those questions which are 
worth asking and answering, and which have variable difficulty and urgency; and 
finally a set M of metamathematical and methodological views about the character 
of the proofs, the articulation and the hierarchy of the disciplines, the scope and the 
nature of mathematics. Most of these views are implicit in the shared knowledge 
of the mathematical community and get incorporated during the learning process 
that every young mathematician goes through.

There exists some empirical ground for the notion of metamathematics. 
Philosophically inspired inquiries have documented the non-explicit aspects of 
mathematicians' appraisal of proofs and reasonings in mathematics (Löwe et 
al., 2010; Inglis & Aberdein, 2015). An empirical survey led by sociologist Zarca 
(2009, 2012) on (French) mathematicians substantiates the claim that mathematical 
practice relies on shared but implicit values. His work provides a comprehensive 
description of the beliefs and opinions of mathematicians on their own field. 
Zarca mobilizes the notion of ethos to account for the content of these opinions: a 
professional ethos is a set of dispositions acquired through experience and which 
depend on what is socially recognized as relevant in the exercise of a profession, 
in any dimension (epistemic, aesthetic, social, etc.). Dispositions are a central 
element of Bourdieu's theory of fields and habitus; they can be considered as 
embodied and regularized schemes of action and beliefs, internalized through 
familial and professional socialization (Lahire, 2003, 2019). Zarca (2009) explains 
that:
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A professional ethos can be identified from the individual practice and judgments 
of the members of the profession, as well as from the collective practices and 
judgments, crystallized in hierarchies, prestige, or power and objectified in the 
modes of organization of exchanges, control of work, distinction of excellence, 
etc. (p. 352).

Mathematicians in training must become acquainted with these implicit 
hierarchies, rules and norms of behavior that are interwoven with their professional 
practice. Thus, the sociological notion of ethos sheds light on the process by which 
mathematicians acquire metamathematical opinions on their practice.

Kitcher (1984) justifies the relevance of his model by arguing that change 
occurs in mathematics through what he calls interpractice transitions from some 
mathematical practice ⟨L, S, R, Q, M⟩ to another mathematical practice ⟨L', S', R', 
Q', M'⟩. Kitcher (1984) contends that the evolution of mathematics consists of a 
sequence of mathematical practices and that the role of metamathematics is central 
in these transitions: "changes in metamathematical views are intertwined with 
large-scale changes in other components, and metamathematical change serves 
to indicate those episodes which are the closest analogs to scientific revolutions" 
(pp. 191-192).

An example of such a 'revolutionary' change has been proposed by Corry (2004), 
who shows that the image of mathematics2 shared by algebraists had changed 
at the beginning of the 20th century. In particular, the reconfiguration of their 
metamathematical perspectives led to the emergence of modern algebra and 
materialized in the publication of Bartel L. Van der Waerden's textbook Moderne 
Algebra in 1930. This view is also developed by Dunmore (1995), who considers 
that profound changes in mathematics may be revolutionary on the meta-level, 
although still being conservative on the object-level. To explain such changes, 
Dunmore supports Mehrtens' claim that anomalies – in Kuhn's sense – play an 

2 The notion of image of knowledge was borrowed by Corry (1989) at the end of the 1980s from anthropologist 
Elkana (1981), who introduced it to set up a characterization of scientific knowledge as a cultural system. 
Corry divides mathematical knowledge into three interwoven parts: the body of knowledge, the image of 
knowledge, and the reflexive knowledge. According to him, the body of knowledge refers to the set of theories, 
"facts" or statements, methods, and open problems associated with a scientific field. This study, on the 
contrary, contends that the body of knowledge—in Kitcher's mathematical practice—is the conjunction of 
accepted statements (S), reasonings (R), and questions (Q). The image of knowledge corresponds to the 
metamathematics M. The reflexive knowledge consists of the part of mathematics that takes itself as an object 
of study. This notion could certainly be analyzed along the lines of the work of Lautman (as cited in Petitot, 
1987).
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important role in revolutionary changes in mathematics: they force mathematicians 
to modify their metamathematical views to avoid the inconsistencies. Kitcher 
(1984) contends that it is precisely in such crises in which different views of 
mathematics compete, and in which mathematicians must commit and defend 
their views, that metamathematical views become fully explicit (p. 189).

Metamathematics and the interplay of practices
In his book, Kitcher (1984) purported to describe nontrivial changes in 
mathematical practice. However, his approach suffers from its generality, which 
prevents his model from accounting for local and specific dynamics, especially 
those governing the 20th and 21st centuries mathematical production, which is 
characterized by the professionalization of the discipline. Kitcher's model of 
mathematical practice seems to apply to some mathematical community prior 
to the 20th century, although he acknowledges the existence of several sub-
communities, that would be characterized by their own metamathematics. 
For him, the goals of every mathematical community – such as advancing 
knowledge, systematizing results, increasing understanding, offering proofs, 
etc. – "are mediated by more specific metamathematical views, which can vary 
from community to community, and which represent the community's reflective 
understanding about how its ultimate goals are to be achieved" (Kitcher, 1984, p. 
189). Unfortunately, Kitcher does not explain how to account for local changes of 
mathematical practice that would concern only communities of mathematicians. 

This is precisely an objection raised by Ferreirós (2016) in his monograph 
Mathematical Knowledge and the Interplay of Practices. Ferreirós acknowledges the 
difficulty of accounting for the multi-level structure of mathematical practices 
and his book is devoted to providing an alternative to what he considers to be 
reductionist approaches. Among them he includes that of Kitcher, but also its 
extension by philosophers Van Kerkhove and Van Bendegem (2004), because 
their model describing the plurality of mathematical practice would be too 
compartmentalized. Moreover, Ferreirós notices that Kitcher's adaptation of 
Kuhn's model to mathematics promoted an image of the discipline that is governed 
by a single practice or disciplinary matrix. In contrast, Ferreirós defends the idea 
that, at a given time, several practices – or frameworks, as he names them – coexist 
in the mathematical community. While Kitcher, following Kuhn, focuses on 
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interpractice transitions and sees mathematical change as a temporal succession 
of such practices, Ferreirós is interested in the interactions between practices: 
what he calls their interplay. For him, practices are interconnected in a systematic 
fashion at various levels, and the analysis of any practice should require the 
philosopher to consider the connections with other strata of practices.

The work of sociologist Zarca (2012) lends support to this claim. In his survey, 
he asked mathematicians to determine the classes of the Mathematics Subject 
Classification (MSC) to which they believe themselves to belong3: only 36 % of the 
mathematicians picked up one such class, 27 % chose two, and 37 % chose three. 
These results reflect the prevalence of interconnections within mathematical 
specialties. Indeed, the granularity of mathematical communities – which was 
already recognized as early as the 1960s (Fisher, 1966) – and the widespread lack 
of co-understanding between mathematicians (Barany & MacKenzie, 2014), are 
counter-balanced by the high interconnectivity of mathematical sub-domains. This 
implies that mathematicians may claim membership to various sub-disciplines 
more often than natural scientists.

For Zarca (2012), the interconnectivity of domains of mathematics plays a 
tremendous role in the unity of mathematics, even more prominent than the 
centrality of rigorous demonstrations and axiomatization: "the possibility of 
solving a problem related to a given discipline by different methods, borrowed 
from other disciplines, and this, in a reciprocal manner, is a strong sign of the 
profound unity of mathematics" (p. 233). This has structural implications for 
mathematical accumulation (compared to the natural sciences): mathematicians 
do not discard old theories since they are incorporated into the new, more 
intricated ones, through conceptual connections (Dauben, 1995). Ferreirós (2016) 
supports this view arguing that: 

The whole history of mathematics can be presented as the gradual development of 
a network of links connecting different core notions that initially lie separate, i.e., 
as the creation of a delicate tapestry or spider web establishing bridges between 
the discrete and the continuum, number and geometry, algebra, and analysis—
and, later, topology—etcetera (p. 40).

3 The MSC is an alphanumerical classification scheme developed by the American Mathematical Society 
(AMS) to provide a detailed categorization of mathematical research. A domain or sub-domain is labeled 
by two to five alpha-numerical characters, depending on how many levels of the hierarchical classification 
scheme are used.	
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Despite appearing very sensitive to a comunity-centered and a multilevel 
characterization of mathematical practice, Ferreirós' (2016) account of the interplay 
of mathematical practices derives from an agent-based, cognitive approach. For 
him, the study of mathematical practices should focus on the mathematicians as 
individuals and on the evolution of their set of metamathematical beliefs through 
time, as they play a central role in the production of new mathematics and in the 
reconfiguration of the discipline (pp. 80-82).

There is no denying that every mathematician has an individual history and 
a unique trajectory in the field: there is so much specialization in mathematics 
that this is unavoidable. Hence, Ferreirós (2016) is right to emphasize that "a 
mathematician [...] possesses working knowledge of several different practices and 
of their systematic interconnections; this involves interplay of different strata of 
mathematical knowledge" (p. 247). However, it does not appear that this argument 
is conclusive to justify that an agent-based approach of mathematical practice – 
and of metamathematics in particular – is as relevant an approach as a community-
based one. Indeed, individual scientific production relies on professional networks, 
schools of thoughts, etc., which are meso-level organizations (Whitley, 2000). 
Thus, mathematical communities have a direct effect on mathematical growth 
and on individual mathematical practice. From these theoretical considerations, 
the case study evaluates the role of metamathematics in mathematical change and 
stabilized mathematical practices in the geometric control theory community.

From theoretical conceptualization to methodological 
implementation

Operationalizing the notion of collective practices
There are several recent textbooks on geometric control theory (Jurdjevic, 1997; 
Agrachev & Sachkov, 2004; Bullo & Lewis, 2005), including an internal history 
(Brockett, 2014; Lewis, 2018). While they provide qualitative information on the 
mathematical practices shared by geometric control theorists, they do not give 
material foundation to the underlying mathematical community. Then, to make 
this notion operational, we will now turn to the study of citational practices. 
Indeed, citation is an institutionalized practice in scientific research: citing is a 
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performative action which labels the cited papers depending on the function the 
citing author attribute to them (Moravcsik & Murugesan, 1975). The reasons for 
citing can be very varied: persuasiveness, positive or negative credit, information, 
reader alert, etc. (Brooks, 1986). By drawing a line between the cited author and 
the citing author, a citation enables the latter to claim some (or reject any) cognitive 
proximity with specific members of a scientific community.

Citing "correctly" is an expected and peer-reviewed literary exercise: when 
reviewing the state of the art in each field, one has the right to expect certain 
recognized sources; moreover, citing a reference is a matter of not being blindly 
critical, nor overly laudatory. The citational practices of a given field constitute 
implicit norms that young scholars must internalize and failure to comply with 
them is considered a serious violation of the professional ethics associated with 
that field (Lemieux, 2012). Since citational practices are collectively regularized, 
they give indirect insights about some aspects of the practices associated with 
scientific communities. Indeed, the cited references in a scientific production 
form a trace of the professional activity, through which certain socio-cognitive 
relationships between the cited author and the citing author are expressed and 
endorsed (Milard, 2014). These considerations show that citational practices may 
be used as a proxy for membership to a mathematical community.

In the first part of the case study, the subjective historical narratives made about 
the emergence of geometric control theory will be corroborated with a co-citation 
analysis. We say that author A and author B are co-cited in a given paper if they both 
appear in the bibliography. Co-citation is a relationship established by the citing 
author. The more two authors are co-cited by a large number of researchers, the 
more they can be considered 'close' from a scientific perspective. Measuring this 
closeness is equivalent to measuring the association between authors as perceived 
by the population of citing authors (Small, 1973). From a set of authors and their 
co-citations, one can draw a weighted graph whose nodes represent the (most) 
cited authors and whose edges symbolize occurrences of co-citations. This graph 
establishes a symbolic map of the existing socio-cognitive connections within the 
field, whose evolution through time can be observed. Co-citation analysis then 
provides a tool for monitoring the development of scientific specialties.

The visual layout of the graph represents a simulation of a physical model, in 
which nodes are electric charges and edges are springs (Eades, 1984). Depending 
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on the choice of the physical parameters, authors who are often co-cited together 
can appear closer than authors which are less co-cited (the attractive force of the 
springs compete with the repulsive force between the nodes). Community detection 
algorithms identify a partition of the graph (into sub-graphs, or communities) 
which maximizes the internal connectedness over the interconnectedness. A 
recognized method to perform this task consists in maximizing a quality function 
called the modularity (Newman & Girvan, 2004), which has been shown to be 
equivalent to minimizing the energy associated to a spin-glass model (Reichardt 
& Bornholdt, 2006). Due to their higher degree of connectedness compared to 
the mean connectedness of the graph, such communities gather authors who 
are more often co-cited among them, and then can be considered as proxies for 
scientific communities (Wallace et al., 2009; Gingras, 2010).

The second part of the case study addresses the citational practices themselves to 
assess how membership to the community of control theory shapes mathematical 
practices. The discussion focuses on the articles published in 1973 and 1974 by 
control theorist Sussmann and differential geometer Stefan, because they proved 
independently and simultaneously quasi-identical results with similar methods. 
This is a unique opportunity to study whether and how the production and the 
reception of mathematical results depend on the community. To evaluate this 
hypothesis, the limitations of scientometrics are compensated with a specific 
methodology: a thematic labelling of the corpus of the papers citing their 
contributions is made, and a test of independence is performed on the contingency 
tables obtained from this labelling procedure. Such a qualitative treatment of the 
corpus of scientific articles completes the scientometric analysis of the first part 
and illustrates the fruitfulness of using complementary sociological traditions. 

Throughout the entire case study, the role of metamathematics and its 
articulation with the notion of mathematical community are addressed through 
textual sources written by geometric control theorists. This textual content is an 
important material of the case study as it is mobilized to support the hypotheses 
formulated from the quantitative and qualitative analyses. The dialogue between 
the textual resources – both mathematical and historical – and the bibliometric 
analyses allows to operationalize the relationship between metamathematics and 
mathematical communities. In the end, the sociological content of the case study 
will support and enable philosophical inquiry, rather than replace it: the former 
will inform the latter, whose centrality will be preserved.
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Empirical and methodological aspects
The corpuses of mathematical articles involved in both parts of the case study have 
been extracted from the Web of Science bibliographic database, which includes 
information of authors, journals, and citations. This database is widely used in 
scientometrics and represents the most up-to-date database on scientific journals 
(Li et al., 2018). The corpus selected for the co-citation analysis consists of all the 
articles published between 1968 and 1982 by the SIAM Journal on Control and 
Optimization4. Although the IEEE Control Systems Society – an organizational unit of 
the Institute of Electrical and Electronics Engineers dedicated to the advancement of 
the theory and practice of systems and control in engineering – publishes several 
journals on the topic of control, they were not selected in the corpus because the 
current study focuses on mathematical communities. The period 1968-1982 is 
divided in three sub-periods of five years: 1968-1972 (232 articles), 1973-1977 (328 
articles) and 1978-1982 (290 articles). Given that the interest is in the dynamics 
of the research network in control theory, it seemed appropriate to base the co-
citation analysis on this periodization.5

The data extracted from the Web of Science was then parsed on the open-access 
data analysis platform CorText Manager. Network mapping6 has been performed 
on the 150 most cited authors7, letting CorText find the optimal threshold for edge 
filtering8. These choices favor the most endogenous cited authors over exogenous 

4 The choice of this journal is based on the preliminary observation that it appears to be prominent in the 
cited literature of geometric control theory on the period. The time span 1968-1982 has been chosen based 
on the mathematical content of control theory papers: control theorists admit that they did not acknowledge 
the relevance of geometry in their field before the end of the 1960s, and that this new perspective had gained 
acceptance by the beginning of the 1980s (Lewis, 2018, p. 136).	
5 See Réale et al. (2020) for a similar choice in the field of ecology.	
6 The network mapping algorithm was run with the following options: the weight of the nodes coincides 
with the frequency of citation of their corresponding authors, the proximity measure (weight) of the edges 
is the raw measure. The .gexf file that was created could then be treated by the open-source software Gephi, 
in which I merged the nodes associated to the same mathematician but that had not been detected as such 
by CorText.
7 To make sure that selecting out the 150 most cited authors would not be detrimental to the analysis, 
CorText’s List builder algorithm allows to check that the 150 most cited authors amount to 80 % of the 
cumulated frequency of the 300 most cited authors (for each 5 years period).	
8 CorText's network mapping algorithm proposes an optional edge filtering in order to delete every edge 
whose weight is below a certain threshold (the minimal value is 0). This procedure is justified on the basis 
that edges should be filtered to get rid of insignificant edges that make it difficult for users to visualize 
the most significant features of the graph. CorText Manager incorporates an optimal threshold detection 
strategy which determines for users a threshold that minimizes the number of links while conserving the 
overall connectedness of the network. This threshold depends on the number of nodes selected.	
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ones. Running the network mapping algorithm with different periodizations 
(from 1 to 4 periods, determined by CorText), numbers of nodes (150 or 300) 
and values of threshold (from 2 to 5, the optimal threshold found by CorText 
on the periods 1973-1977 and 1978-1982), shows that the latter variable seems 
to be most influential in the partitioning of the graph found by the community 
detection algorithms9. Overall, the higher the threshold, the more the names 
attached to geometric control in the literature form an independent community. 
It is noteworthy that the data associated to the years 1973-1977 appear to be 
the most robust with respect to changes in periodization, number of nodes 
and threshold. Visual processing of the graphs and running of the community 
detection algorithms have been performed on the open-source software Gephi 
(Cherven, 2013).

The second component of the case investigates some aspects of the citational 
practices within the community of control theory10 since the middle of the 1990s. It 
analyzes how the results of Sussmann (1973a, 1973b) and of Stefan (1974a, 1974b) 
– and in a lesser extent a theorem of Nagano (1966) – have been mobilized in 
this community. Since there is an interest in stabilized citational practices within 
or outside the control theory community, the corpus has been restricted to the 
period from 1993 until March 202011. This time span still contains the majority of 
papers citing Stefan and Sussmann's articles, since overall, the number of citing 
papers published after 1993 is three times the number of citing papers published 
before 199312. Following standard practice in qualitative sociology (Paillé & 

9 The communities appearing on the graphs in the case study have been obtained through the so-called 
Leiden algorithm (Traag et al., 2019) (with resolution 1 and random seed), but it turns out that they are like 
those obtained by running the Louvain algorithm (Blondel et al., 2008).
10 This has to do with control theory and not with geometric control theory because, although it is likely that 
the vast majority of the authors citing the papers of Stefan, Sussmann and Nagano in control theory are 
geometric control theorists, the precision of the classification of the journals in the Web of Science database is 
not sufficient to identify with certainty the sub-community within control theory to which belong the citing 
papers.
11 The choice of the starting date can be justified by the fact that their results did not reach a stabilized 
citational usage before at least the mid-1980s. An analysis of the literature indeed shows that the usage of 
the denomination 'orbit theorem' was still fluctuating by the end the 1980s: see for example (Sontag, 1986) 
where the name 'orbit theorem' appears as a generic name. In the differential geometry community, the data 
obtained from the query on the Web of Science show that Stefan’s and Sussmann's work began to attract 
attraction only in the 1980s.	
12 The research for the period 1973-2020 (March) sent back 143 articles citing Stefan’s work, 422 articles citing 
Sussmann’s, and 108 articles citing Nagano’s. Between 1993 and March 2020, Stefan’s contributions (both the 
main paper and the letter) were cited by 119 articles in the Web of Science database of which 118 have been 
found, whereas Sussmann’s work was cited by 327 articles of which 312 have been found, while Nagano was 
cited by 55 references of which 54 were reachable.
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Mucchielli, 2012), several labels were then attributed to each paper, depending on 
how Stefan's, Sussmann's or Nagano's contributions were cited in the papers. The 
attribution of such labels was made based on the context in which the reference 
was found, i.e., the text surrounding the reference. It is often obvious that the 
context refers to one of the chosen labels, while sometimes it may be too vague 
to firmly choose a category. Hopefully, these cases are rare and barely impact the 
relative weights of the categories which are of interest for us: being cited for the 
'orbit theorem' or for the generalization of Frobenius integrability theorem. 

The community to which the citing paper belongs was then coded. To carry out 
this last task, the category to which the journal publishing the paper is associated 
in the Web of Science database was checked: journals classified in the category 
'Automation' were considered part of the control theory. Then, there are papers 
published in journals of other categories, but which can still be considered as 
belonging to control theory: thus, it was checked whether each of the other citing 
papers contained 'control' or 'systems' in the title, in the name of the journal or 
in the keywords and, in any of the cases, it was evaluated whether the paper 
could indeed be considered as belonging to this domain. Subsequently, the 
independence of the variables 'reason for citing' and 'citing community' was 
tested in the contingency tables thus obtained. Pearson's χ2 tests were performed 
on the tables that met Cochran's criteria, while a Barnard's test was performed on 
the only table that did not meet this criterion (Table 3).

The emergence of geometric control theory
"Control theory is the theory of prescribing motion for dynamical systems rather 
than describing their observed behavior" (Bloch, 2015, p. VI).  This field, which 
lies at the junction of mathematics and engineering, emerged in the 19th century 
industrial revolutions and blossomed in the first half of the 20th century following 
the development of aeronautics and the need for the understanding of automation 
and servomechanisms (Bennett, 1996). After the Second World War, the 
knowledge of the so-called 'control systems' – dynamical systems with feedback 
loop – became increasingly necessary in fields such as aerospace engineering, 
cybernetics and early robotics. It was only at the end of the 1950s that conscious 
steps to formalize control theory as a precise mathematical discipline were 
undertaken. An important milestone in representing control systems occurred 
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at the beginning of the 1960s, when Rudolph Kalman proposed to consider 
the feedback input as a control parameter living in an abstract 'control space' 
(Kalman, 1960a). Relying on Kalman's discovery of the necessary and sufficient 
condition for a linear control system to be controllable (Kalman, 1960b), the 1960's 
were devoted to understanding the behavior of linear control systems, focusing 
on stability, feedback and hysteresis (Brockett, 2014).

The need for a mathematical description of nonlinear control systems was 
triggered by the earlier attempts of geometrizing mechanics, and most notably 
the acclaimed book Foundations of Mechanics by Abraham and Marsden (1967). 
This stimulated interest in the control theory community toward using geometric 
and Lie algebraic techniques. In fact, a successful and fruitful attempt to connect 
the study of differential equations and differential geometry had been already 
made in 1963 in a seminal paper by Hermann (1963). However, this article did 
not attract much attention before the end of the decade, when the contributions 
of control theorists Lobry (1970), Haynes and Hermes (1970) acknowledged 
Hermann's insights. Geometric control theorist Jurdjevic (1997) argues that the 
theoretical orientations of control theory at the beginning of the 1960s – towards 
automata, logic, and abstract dynamical systems – "led away from geometric 
interpretations of linear theory and was partly responsible for the indifference 
with which R. Hermann's pioneering work of 1963 [...] was received by the 
mathematical community" (p. 2). In addition to the explanations proposed by 
Jurdjevic, geometric control theorist Brockett (2014) also considers responsible 
the fact that linear algebra and geometry were not widely taught in engineering 
curricula at that time, and that the learning curve to master these techniques at a 
sufficient level was steep and compounded by the scarce and uneven literature 
(p. 2204).

The state of a dynamical system is symbolized by a point in a so-called 
'state space' and the differential equations governing the system give the 
trajectory of this point in this state-space, depending on the choice of control 
parametrizing the system. One of the goals of control theory is to determine, 
given an initial state x0 in a n-dimensional state-space – or more generally a 
manifold M – what is the set Σ ⊂ M of solutions in positive time of the system 
of differential equations parametrized by the control; this set corresponds to 
the set of states that are reachable from the initial state. A system is controllable 
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from x0 when the set of reachable states from x0 is the entire state space, i.e., 
when Σ = M (Sontag, 1991).The state of a dynamical system is symbolized by 
a point in a so-called 'state space' and the differential equations governing 
the system give the trajectory of this point in this state-space, depending on 
the choice of control parametrizing the system. One of the goals of control 
theory is to determine, given an initial state x0 in a n-dimensional state-space 
– or more generally a manifold M – what is the set Σ ⊂ M of solutions in 
positive time of the system of differential equations parametrized by the 
control; this set corresponds to the set of states that are reachable from the 
initial state. A system is controllable from x0 when the set of reachable states 
from x0 is the entire state space, i.e., when Σ = M (Sontag, 1991).

The relationship between control theory and differential geometry relies 
on the notion of vector fields. It was well-known in the dynamical system 
community that the set of solutions of a first order nonlinear differential 
equation on a manifold M could be equivalently seen as an integral curve on 
the same manifold. Indeed, the differential equation uniquely defines a vector 
field on the manifold, through the following one-to-one correspondence:

dx/dt = f (x(t), t)   ←→   f  is a vector field on M

This correspondence can be straightforwardly generalized to parametrized 
systems of differential equations, i.e. control systems: a given set of differential 
equations dx/dt = f(x(t), t, u(t)) parametrized by a control u: ℝ → ℝm then 
corresponds to a family of vector fields F = (fu)u on M. 

The innovation of Hermann's (1963) work to solve control theoretic problems 
relies on drawing a relationship between two important results dating back 
from several decades: Frobenius integrability theorem and Chow-Rashevskii 
theorem. Using the above bijective correspondence, Hermann has shown that 
under adequate conditions, the set Σ of reachable states from x0 corresponds 
to the leaf through x0 of the foliation induced by the family of vector fields F. 
He provides several sufficient conditions on F, which make the distribution 
of vector fields induced by F integrable into a (singular) foliation. For at least 
one of these conditions – when the family is involutive and locally finitely 
generated – he had proven that the induced distribution was integrable 
(Hermann, 1962). Today, Hermann's result is recognized as an important 
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Historical accounts of the 1960s-1980s made by control theorists converge in 
saying that the introduction of geometry in control theory precipitated a change 
in perspective, which some geometric control theorists qualify as 'revolutionary' 
(Brockett, 2014, p. 2204). This led to the emergence of the field of geometric 
control theory (Jurdjevic, 1997, p. 2), which then has "steadily [grown] into a well-
developed research area" (Lewis, 2018, p. 136). The co-citation analysis of papers 
published in the SIAM Journal on Control and Optimization in the period 1968-1982 
substantiates the narratives of geometric control theorists. SIAM is the acronym 
for the Society for Industrial and Applied Mathematics, an organization gathering 
engineers and mathematicians. Founded in 1951, it is characterized by its size 
and interdisciplinary scope: it is the world's largest scientific association devoted 
to applied mathematics. The Society began publishing its own journals in the 
mid-1960s. The aforementioned journal began printing in 1963 as the Journal of 
the Society for Industrial and Applied Mathematics Series A: Control. The name was 
subsequently changed to SIAM Journal on Control in 1966, and it adopted its current 
name in 1976. The frequent name changes reflect the speed of the disciplinary 
reconfigurations during this period in this part of applied mathematics.

It can be seen that Figure 1 for the period 1968-1972 is very dense. It reflects the state 
of the field at the end of the 1960s: an effervescence of research topics, without deep 
specialization. The size of the node associated to Kalman confirms its prominence 
in the development of control theory as a discipline. Figure 2, covering the period 
1973-1977, shows a process of differentiation between several clusters, which seem 
to direct their research in different directions. More importantly, the presence 
of the geometric control theory community can be observed (in magenta, at the 
top). The names appearing in this sub-graph gather the researchers identified in 
the literature as the founders of this discipline, as well as their main historical 
references. Their spatial proximity with Kalman's huge node is a manifestation 
of their theoretical proximity. Figure 3, covering the period 1978-1982, shows that 
geometric control theory still forms a distinct community (in dark green, at the 
top), with a very close relationship with Kalman's cluster.

contribution toward the generalization of Frobenius theorem to singular 
(smooth) distributions and singular foliations, which was eventually proven 
by Sussmann (1973b) and Stefan (1974b).
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Figure 1. Most cited authors in the SIAM Journal on Control and the SIAM Journal on Control and Optimization 
between 1968 and 1972

Source: Created by the author.

Figure 2. Most cited authors in the SIAM Journal on Control and the SIAM Journal on Control and Optimization 
between 1973 and 1977

Source: Created by the author.
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Figure 3. Most cited authors in the SIAM Journal on Control and the SIAM Journal on Control and Optimization 
between 1978 and 1982 

Source: Created by the author.

Note: The size of the nodes varies according to the number of citations of their associated author. 
The names of the 50 most cited authors are reported (except in Figure 2, where the names Hermann, 
Jurdjevic, etc., are shown to locate them). The visual layout has been obtained via the Force Atlas 
algorithm on the Gephi software. The colors indicate the communities determined through the 
Leiden algorithm: the violet subgraph is the one gathering more nodes than any other, then comes 
the light green subgraph, then cyan, yellow, orange, magenta, and dark green. The modularity of 
Figure 1 is 0.51, that of Figure 2 is 0.66 while that of Figure 3 is 0.59.

The realization by several control theorists at the end of the 1960s that 
geometric methods could lead to relevant insights and could solve seemingly 
intractable problems encouraged them to become acquainted with these tools. 
Brockett (2014), who was then active, testifies that: "For systems describable by 
differential equations, this geometric approach seemed to hold the promise of a 
systematic development of nonlinear control, something that had been completely 
missing in the past" (p. 2204) The introduction of this new mathematical material 
led to what might be considered a 'revolution' in this sub-part of control theory. 
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This radical change was due not only to the importation of new arguments and 
constructions, but also to a shift in the metamathematical positions that control 
theorists had adopted toward their object of research. In particular, the view that 
merging geometry and control theory was a necessary step in the process of better 
understanding nonlinear control systems has been widely held in the geometric 
control community13. This metamathematical opinion has even been formalized 
by Sussmann (1985), a prominent figure in geometric control theory, who justified 
the importation of geometric tools as follows:

In our view, the real criterion for deciding whether or not a mathematical theory 
A has significant applications to a research area B is whether, using A, questions 
about B can be answered that make sense before A is brought in, but cannot be 
answered without A (p. 517).

The above citation was written in the mid-1980s, when the community of geometric 
control theory was still in search for recognition and can therefore be interpreted 
as an attempt to legitimize the existence of this community. There exist attested 
cues of the diffuse institutionalization of geometric control theory by the mid-
1980s, through textbooks (e.g., Isidori, 1985) and collective volumes (see Fliess 
& Hazewinkel, 1986). The growing interest in the geometrical aspects of control 
theory during this decade is illustrated in the preface to the second edition of 
Isidori's (1989) textbook: "Synthesis problems of longstanding interest […] can be 
dealt with relative ease, on the basis of mathematical concepts that can be easily 
acquired by a control scientist" (p. VII). While in the 1980s this community of 
researchers, bound by this common interest, was sometimes designated under 
the term 'nonlinear control theory'14, the name 'geometric control theory' enjoyed 
little recognition before the 1990s (see Figure. 4). As of today, control theorist 
Lewis (2018) claims that geometric control theory forms a distinct community 
with a clear and well-established topic of research, synthesized in various texts 
(p. 136).

13 See for example such a justification in Bullo and Lewis (2005, pp. X-XI).
14 See for example the preface of Nijmeijer and van der Schaft (1990).	
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Figure 4. Histogram of the yearly number of publications (such as articles, proceeding papers, reviews, 
and book chapters, containing the words 'geometric control' in their title, abstract, or keywords) indexed in 

Web of Science from 1990 to 2020

Source: Created by the author.

A community-centered perspective on mathematical 
knowledge

What is the 'orbit theorem'?
The emergence of geometric control theory at the beginning of the 1970s paralleled 
the publication of two simultaneous decisive contributions by control theorist 
Sussmann (1973b) and differential geometer Stefan (1974b), who independently 
proved two results. The first one states that the orbits of a family of vector fields on 
a given manifold are immersed submanifolds. In modern day control theory, this 
result is designated under the name 'orbit theorem' (see Figure 5). Although this 
mathematical result had been mobilized in geometric control since the publication 
of Sussmann's and Stefan's work in 1973 and 1974, this label was not attributed 
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to it for at least a decade. The denomination 'orbit theorem' appeared first as an 
indefinite generic name at the beginning of the 1980s15. The personification of this 
label –attributing its origin to several authors – did not occur before the end of the 
1980s, as control theorist Sontag (1986) was still using the indefinite denomination 
in 1986. The orbit theorem is considered a founding element of geometric control 
theory since it describes the differentiable structure of the sets of reachable points 
of a control system. To emphasize the centrality of this result in this community, 
Jurdjevic (1997) goes so far as to state that "the 'orbit theorem' marks a point of 
departure for geometric control theory" (p. 32).

Figure 5. Excerpts from several textbooks on geometric control theory 

Source: The first theorem is by Jurdjevic (1997, p. 33), the second by Agrachev and Sachkov (2004, p. 63), 
and the third by Bullo and Lewis (2005, p. 373). 

Note: The statement of the orbit theorem can have several forms, although at least all include the 
first statement and more generally all correspond to Theorem 4.1. of Figure 6.

15 See e.g., Sontag and Sussmann (1982) for such an early usage.
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Figure 6. Distinction between 1) the so-called "orbit theorem" (Theorem 4.1.) and 2) the generalization of 
Frobenius' theorem (Theorem 4.2.)

Source: Excerpt from Sussmann's (1973b, p. 179) original paper.

The second result proven by Stefan and Sussmann in their 1973-1974 articles 
(Sussmann, 1973b; Stefan, 1974b) is a generalization of Frobenius integrability 
theorem. This theorem was formulated by the mathematician Frobenius in 1877 
as a decisive contribution in the solution to the 'problem of Pfaff' (Hawkins, 
2013). This result, in a modern formulation, states that a smooth regular 
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distribution is integrable into a regular foliation if and only if it is involutive16. 
When the distribution is no longer regular, i.e., when its rank is not constant and 
possesses singularities, the involutivity condition is no longer sufficient. In 1962, 
Hermann extended Frobenius' result to locally finitely generated smooth singular 
distributions; in 1966, Nagano generalized it to analytical singular distributions; 
and in 1973, Stefan and Sussmann independently showed that it could be extended 
to smooth singular distributions.17

A preliminary study of the mathematical literature citing the results of Stefan, 
Sussmann and Nagano, led to the hypothesis that citational usages were dependent 
on the citing community. In control theory, these authors seem to be cited mainly 
for the orbit theorem, while outside control theory, they were cited mainly for the 
generalization of Frobenius integrability theorem18. These differences are visible 
both at the level of citational practice and at the level of mathematical knowledge 
production. In fact, the papers of Sussmann and Stefan differ in their respective 
emphasis: on the manifold structure of the orbits, on the one hand, (Sussmann), 
versus the characterization of foliations with singularities by means of foliated 
atlases, on the other (Stefan). Although the mathematical objects that are central 
to their proofs differ only slightly19, the differences between their respective 
mathematical motivations are reflected in the way they prove their results: the 
former uses a tedious topologically-oriented proof, while the latter uses a more 
geometry-oriented one.

Hector Sussmann was born in Buenos Aires in 1946. After earning a degree in 
mathematics in 1966, he went to the Courant Institute (NYU) to complete his 
doctorate in applied mathematics, which he defended in 1969. In his paper 
published in the Transactions of the AMS, Sussmann (1973b) is primarily motivated 
by control theoretic considerations: finding the differentiable structure of the orbits 
of a family of vector fields, because under some conditions they correspond to the 
reachable sets of a control system. This explains the order in which he addresses the 
problem (see Figure 6): in his paper, he first distinguishes the results demonstrating 
16 See Theorem 1.3.8 in Candel and Conlon (2000).
17 See Lavau (2018) for a mathematical account of these successive steps.	
18 See, for example, Dufour and Zung (2005, p. 17).	
19 For Sussmann, orbits are those of the group of infinitesimal transformations generated by the flows of 
a family of vector fields. Stefan adopts the same strategy, but introduces an ad hoc object which he calls 
arrows, of which the flows of vector fields form a particular case. In his article, orbits are called 'accessible 
sets'.	
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the differentiable structure of the orbits and then presents the generalization of 
Frobenius theorem as a mere consequence of the first more fundamental results. 
This hierarchical presentation is made explicit in the introduction of his article 
and was even transparent in the short letter he published a few months earlier in 
the Bulletin of the AMS to advertise his result (Sussmann, 1973a). The journals in 
which Sussmann published his letter and his main paper belong to the American 
Mathematical Society and are intended for a large audience. This would explain 
why Sussmann uses in his paper a general-purpose mathematical language that 
does not include the linguistic and notational specificities of control theory (which 
can be found in some of his papers of the same period).

Simultaneously, Peter Stefan, then a Slovak refugee and a PhD student in 
differential geometry at the University of Warwick, proved the same results 
(Stefan, 1974b). While the methods were similar, his goals were distinct. His 
work focuses on singular foliations, even if he seems sufficiently acquainted with 
control theory to employ its vocabulary: he received an education in this field and 
contributed to it before leaving Prague (Brown & Eells, 1981), and he certainly 
attended the first international conference on geometric methods in control 
theory as his contribution appears in the proceedings (Stefan, 1973). The first page 
of the first section of his 1974 paper published in the Proceedings of the London 
Mathematical Society is devoted to defining singular foliations and their leaves. 
This is very important because Stefan is the first to provide an explicit definition of 
singular foliations in terms of local coordinates, thus mimicking the well-known 
definition of regular foliations through foliated atlases and charts. Both in his 
paper and in the letter sent to the Bulletin of the AMS in March 1974 to advertise 
his result (Stefan, 1974a), Stefan puts the emphasis on the foliation structure 
equipping every partition of M into orbits. Stefan considers the differentiable 
structure of the orbits to be an intermediate result: it is mentioned as a side remark 
in Theorem 1. (see Figure 7), and appears in his proof as a consequence of Lemma 
3.1. The generalization of the Frobenius theorem corresponds to Theorem 5. of 
his paper, which is a reformulation of Theorem 1. in the context where the arrows 
are vector fields. During the years following the publication of his original paper, 
Stefan focused on deepening his understanding of the integrability conditions of 
singular smooth distributions into singular foliations. His last article – edited and 
published after his accidental death during a hike on Mount Tryfan in Wales in 
1978 – is a summary of what was known at that time about the integrability of 
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families of vector fields (Stefan, 1980). This supports the idea that he was primarily 
interested in the study of singular foliations. 

Figure 7. Theorem 1 

Source: Excerpt from Stefan's (1974b, p. 701) original paper.

Note: Theorem 1. is the main theorem presented in the beginning of the article from which Stefan 
generalizes Frobenius theorem. He emphasizes that the partition of M by the "accessible sets" 
(which he chose over the term 'orbits') forms a singular foliation.

What do you cite for? Where do you cite from?
While Stefan's and Sussmann's contributions were produced for different 
objectives, they have also been received very differently within and outside the 
control theory community. In the citing corpus over the period 1993-2020, four 
main situations can be identified: 1) when the citing article refers to their papers 
for having proven the orbit theorem; 2) when the citing article refers to their 
papers for having proven the generalization of Frobenius integrability theorem; 3) 
for definitional purposes, such as for the definition of orbits or singular foliations; 
4) as mere routine reference. The number of times Stefan or Sussmann were 
cited alone was also calculated. The proportion of each one of those categories is 
presented in Table 1. 

Table 1. Most common reasons for citing in articles indexed in the Web of Science database and 
citing Štefan (1974a, 1974b) and Sussmann (1973a, 1973b) between 1993 and March 2020

For a theorem For other uses

Orbit 
Theorem

Frobenius Definition Reference Cited 
alone

Stefan 14 % 47 % 36 % 15 % 8 %

Sussmann 23 % 29 % 17 % 22 % 66 %

Source: Created by the author.

Note: The table should be read as follows: "From 1993 to March 2020, 47 % of all papers citing one 
or both Stefan's (1974a, 1974b) articles do it for his generalization of Frobenius theorem". Notice 
that the sum of the percentages of the first four columns may go beyond 100 % because some 
articles in the corpus refer to Stefan or Sussmann for several different reasons.
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Although Stefan and Sussmann simultaneously and independently proved similar 
results, there is no consensus on what their main contribution is, be it understood 
as the orbit theorem or as the generalization of Frobenius theorem. However, 
some variations in Table 1 may be explained by the different aspects favored by 
one author over the other. For example, the fact that Stefan is much more cited for 
definitional purposes certainly comes from the fact that the definition of singular 
foliations plays a prominent role in his paper. The authors are co-cited 108 times, 
which implies that 92 % of the time Stefan is co-cited with Sussmann. Usually, 
when they are cited in the same paper, they are cited for the same reason, in the 
same place of the text. The last column shows that Stefan is almost never cited alone 
(in only 8 % of the papers citing him), whereas Sussmann is cited alone two-third 
of the times. This might be explained by the fact that the references to Sussmann 
come mainly from the field of control theory, in which he is an important figure, 
while Stefan's early death may have influenced his near disappearance from the 
citational landscape. To refine the analysis, the community to which each cited 
paper could belong was evaluated on the basis of bibliographical data (see Table 
2 and 3).

Table 2. Number of citations of Sussmann's (1973a, 1973b) contributions, with respect to the 
given reason and the origin of citation

Reason for citing
Orbit 

theorem
Frobenius 
theorem

From control theory 25 13
From outside 46 80

Source: Created by the author.

Table 3. Number of citations of Stefan's (1974a, 1974b) contributions, with respect to the given 
reason and the origin of citation

Reason for citing
Orbit 

theorem
Frobenius 
theorem

From control theory 7 3
From outside 9 54

Source: Created by the author.

Note: The tables should be read as follows: "Outside of control theory, Sussmann has been cited 
forty-six times for the orbit theorem, while in control theory he has been cited thirteen times for 
the generalization of Frobenius theorem".
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Stefan is disproportionately cited for the generalization of Frobenius integrability 
theorem outside control theory (Table 3). Sussmann is also widely cited for 
this reason, but he is also cited almost as much for the orbit theorem (Table 2). 
Notice that while in control theory he is cited twice as much for the latter than 
for the former, the situation is reversed outside control theory. These contingency 
tables support the preliminary observation20 that outside control theory the 
contributions of Stefan and Sussmann are associated with the generalization of 
Frobenius integrability theorem, while within control theory they are associated 
with the orbit theorem (hence without much emphasis on the foliated structure 
of the ambient manifold). This result confirms also the claims made by geometric 
control theorists that the orbit theorem is quite central to their mathematical 
practice. 

It might be objected that the differences in citational practices may be artificial 
because there are two distinct results in Stefan's and Sussmann's contributions (see 
Figure 6 and 7). This is not surprising because when they wrote their respective 
articles, both Stefan and Sussmann had different objectives and emphasized 
different aspects of their work. However, this justification is not convincing: indeed, 
it cannot explain the fact that mathematician Nagano (1966) is also cited for the 
orbit theorem in control theory. Nagano is a Japanese mathematician who proved 
a generalization of Frobenius theorem in the analytic setting. The presentation of 
the result in his paper shows a clear intention to affiliate himself with Frobenius, 
and Velimir Jurdjevic testifies that Nagano was totally disconnected from the 
community of control theory (Jurdjevic, 1997, p. 63). This is confirmed by the 
study of the literature, since the first recorded mention of Nagano in control 
theory21 was made in a relatively unnoticed paper of 1971 (Elliott, 1971), and then 
in Sussmann's (1973a) letter as a mere reference since his proof does not rely on 
Nagano's ideas. Moreover, control theorists Lobry (1970), Haynes and Hermes 
(1970) had already started mentioning Hermann's fruitful geometric approach in 
the late 1960s, without mentioning Nagano's work either.

20 A Pearson χ2 test on Table 2 was performed, and it was found that χ2 = 10.65, thus the null hypothesis 
assuming the independence of the two variables could be rejected with a confidence of more than 0.99 %. On 
the other hand, Table 3 does not satisfy Cochran's criteria, so that a Barnard test was performed, finding a 
p-value of 0.00022, which allows to reject the null hypothesis as well.
21 This information comes from the data extracted from the Web of Science query about Nagano's (1966) paper.
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However, today his name is referred to in control theory as an important milestone 
in the conceptual foundation of the body of knowledge associated with geometric 
control, and he is sometimes presented as a precursor of the orbit theorem (along 
with Hermann). For example, in contemporary geometric control theory textbooks, 
the orbit theorem is alternatively attributed to Hermann and Nagano (Jurdjevic, 
1997, p. 48), or to Nagano and Sussmann (Agrachev & Sachkov, 2004, p. 63), or 
to Stefan and Sussmann for the smooth case, and various authors (among whom 
belongs Nagano) for the analytic case (Bullo & Lewis, 2005, p. 110). A bibliometric 
analysis of the contemporary literature citing the 1966 paper of Nagano shows 
that the reasons for which he is cited in control theory do not correspond to his 
original intentions: providing a generalization of the Frobenius theorem to the 
analytic setting (see Table 4). Indeed, in the citing corpus over the period 1993-
2020, three main thematic categories can be identified22: 1) for the generalization 
of Frobenius integrability theorem to analytic singular distributions; 2) for the 
orbit theorem; 3) for the accessibility rank condition – or Hörmander condition. The 
last label designates in control theory the condition that a vector field family must 
satisfy for its orbits to coincide with the entire state space (in that case, there is 
only one orbit). It is often reformulated as a characterization of the tangent spaces 
of the orbit; then, in this form, this condition is usually part of the orbit theorem 
(see for example item (2) of Theorem 5.1 and item (ii) of Theorem 7.5 in Figure 5).

Table 4. Number of citations of Nagano's (1966) paper, with respect to the given reason and the 
origin of citation

Geometrical 
results

Control theory results

Frobenius theorem Orbit theorem Hörmander 
Condition

From control theory 8 5 8
From outside 15 3 2

Source: Created by the author.

Outside control theory, Nagano has been overwhelmingly cited for his 
generalization of Frobenius integrability theorem. In contrast, in control theory, 
he has been as evenly cited for this result as for the Hörmander condition, and in 
a lesser extent for the orbit theorem. This correlation suggests that the reason for 

22 The last categories for which Nagano’s paper was cited consisted in being a mere reference (in 13 papers), 
and for some other result not related to foliations (one occurrence), so that they are excluded from Table 4.
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citing is highly dependent on the origin of the citation23. This not only supports 
what has been seen for Stefan and Sussmann – that the community of control 
theory shares particular citational practices that differ from those outside of 
control theory – but also proves that, in the particular case of Nagano, control 
theorists attribute endogenous labels to a mathematical result that was not 
originally related to their field, nor was it intended to be promoted to the status 
of a theorem.  Indeed, in his 1966 paper, the fact that the leaves of an analytic 
foliation are immersed submanifolds – the infamous 'orbit theorem' that control 
theorists refer to – is an intermediary step in the proof of Nagano's theorem.24

CONCLUSION

What then is a theorem?
Several actors agree on the sharp turn that the study of nonlinear control systems 
took in the 1970s, when the geometric perspective was introduced and became 
a defining element of this mathematical community (Jurdjevic, 1997; Brockett, 
2014; Lewis, 2018). The centrality of the geometric approach to study systems 
of differential equations is still recognized in the 2000s, as illustrated by Bullo 
and Lewis (2005) in the preface of their textbook: "… at some point the unity 
offered by a differential geometric treatment becomes advantageous and we feel 
that this is merely a necessary part of the subject, as we see it" (p. X). In particular, 
geometric control theorists not only defend the (metamathematical) view that 
geometric approach is fruitful – and even necessary – to solve their problems, but 
they also claim that it contributes to produce a new mathematical significance on 
their object of research.

Indeed, control theorist Brockett (2014) argues that although the introduction of 
geometric techniques created a schism with engineers, it opened up points of 
23 Table 4 does not satisfy Cochran’s criteria so performing a Pearson χ2 test is not possible. However, by 
merging the last two columns (given that the Hörmander condition is often associated to the orbit theorem), 
one can perform the test on the 2 × 2 table thus obtained and find χ2 = 5.66. This means that the null hypothesis 
(that the reason of citation and the community of citation are independent) can be rejected with a confidence 
of at least 98 %.	
24 Nagano considers the set of all integral manifolds of a given Lie subalgebra of the Lie algebra of vector 
fields passing through a chosen point x and shows that this set is not empty (this is the hard part of the 
proof). Then he states that the leaf through x is the union of all those submanifolds. The analytic structure of 
the leaf is proven in three lines and does not even have a proper Lemma for its own.	
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contact with physics and mathematics (p. 2204). In particular, geometric control 
theory is tightly related to other subfields of mathematics such as Cauchy-Riemann 
geometry, hypoelliptic differential equations or sub-Riemannian geometry, etc.25 

Thus, some geometric control theorists (such as Agrachev) publishes articles in 
pure mathematics journals, as well as in dedicated control theory journals. The 
existence of such interconnections between sub-communities, echoes Ferreirós' 
and Zarca's belief that the interconnectedness of mathematics is a fundamental 
property of this discipline. These successive arguments show that geometric 
control theory appears as a smaller community inside the broader community 
of control theory, with its own metamathematics and independent ties to other 
mathematical communities that other specialized communities within control 
theory do not share.

The second part of the case study has then shown that these specific collective 
metamathematical views impact the production and the reception of mathematical 
contributions in control theory. The intention of Stefan to affiliate himself with the 
Frobenius theorem was explicit, whereas Sussmann chose to emphasize that the 
orbits of a control system form immersed submanifolds of the state space. This 
mathematical result, later recognized as a founding element of geometric control 
theory, has been subsequently labelled under the denomination 'orbit theorem'. 
As the case study shows, this theorem – associated by control theorists to Stefan, 
Sussmann, Hermann and Nagano – seems not to be much mobilized outside of 
control theory. This situation can be explained by the fact that the results of Stefan 
and Sussmann sit at the border between control theory and differential geometry. 
The two communities then refer differently to these results because they are not 
interested in the same problems. A certain mathematical community may consider 
that the key point of a theorem lies not in the original intention of the author, but 
in the applications this community finds in it. Therefore, the original statement of 
a theorem may differ from the way it is invoked years later in each mathematical 
community, because some aspects of mathematical knowledge have stood out 
and shape what is considered as interesting or not. 

A similar question had already been investigated in the 1960s by sociologist 
Fisher (1966). He studied the perceived status of the (dying) theory of invariants 

25 This observation has been made by studying the corpus of papers citing Stefan's, Sussmann's, and Nagano's 
articles. There even exist collective volumes devoted to drawing ties between geometric control and other 
domains of mathematics, such as sub-Riemannian geometry (Stefani et al., 2014).
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in the mid 20th century and observed that "different groups of mathematicians 
evaluate the theory differently within their mathematical Weltanschauung26  
[and that] these classifications and evaluations evolve over time" (Fisher, 1966,  
p. 138). This emphasizes the local properties of metamathematical opinions: they 
are not homogeneously defined across all communities, but rather localized 
and dependent on the community, precisely because they form the basis of 
collective practices. In the same way, in the case study of the present article, 
control theorists single out the 'orbit theorem' from the contributions of Stefan, 
Sussmann and Nagano, because it provides the crucial assumptions from which 
every mathematical reasoning in geometric control theory can be made. Thus, it 
seems that the label 'orbit theorem' plays a particular role in this community. 

Attributing a name to a mathematical statement is a performative and socially 
regularized act. It aims at pointing to a set of cognitive contents that go beyond 
the limits established by the original statement: "Theorems are in a sense just 
tags, labels for proofs, summaries of information, headlines of news, editorial 
devices" (Rav, 1999, p. 20). The denomination 'orbit theorem' thus conveys not 
only a cognitive meaning (the statement, per se), but also a metamathematical 
meaning: that of being an institutionalized manifestation of geometric control 
in mathematical knowledge. Applying a label allows different generations of 
mathematicians to refer to an object that is neither completely the same, nor 
completely different, but which remains a powerful marker of social membership 
to the community that uses this label.

Therefore, the orbit theorem is much more than a mathematical statement: it carries 
collective metamathematical representations. Grasping this content could not 
have been possible without mobilizing the notion of mathematical communities. 
The case study demonstrates that mathematical knowledge is primarily a 
collective knowledge, and that mathematical practice is a collective practice. It is 
interwoven with socio-historical aspects in a way that could not be reduced to the 
oversimplified picture of the interaction between an agent – the mathematician – 
and an external socio-historical background. Rather, the interplay of the collective 
practices with which a mathematician has been acquainted in her professional life 
crystallizes in her unique individual practice. Thus, a philosophical inquiry about 
individual mathematical practices cannot be complete without acknowledging 
the role of mathematical communities and of their associated practices.  
26 That may be translated as worldview or ideology.
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Their importance is even more crucial in contemporary mathematics, which have 
been characterized by their increasing professionalization and internationalization 
since the Second World War.

A central aspect of mathematical practice consists of the metamathematical 
component, for it shapes not only the way mathematicians conduct their work, 
but also how they interact with exogenous mathematical knowledge. Then, 
grounding the philosophical notion of metamathematics in the sociological 
notion of mathematical community is a decisive movement to make the concept 
of collective practice operational. This makes it possible to highlight community-
dependent aspects of mathematical production, which in turn demonstrates 
that institutionalized and settled mathematical knowledge is not unified but is 
susceptible to variations across communities. In time, it could be very informative 
to deepen these sociological considerations and to study the differentiated 
usages to which mathematical objects are subject in different communities. Thus, 
reinstating the collective dimension of mathematical work brings a much more 
dynamical perspective to the study of mathematical practices and their interplay. 
This illustrates how the use of sociology of science benefits the philosophy of 
mathematical practice.
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