¿Qué es un teorema (en la práctica)? El papel de la metamatemática en la construcción de las matemáticas

Palabras clave: análisis de co-citación, teoría del control, práctica matemática, metamatemáticas, comunidades científicas

Resumen

Aprovechando la literatura de la sociología de la ciencia, este artículo aboga por los beneficios de una perspectiva sociológica en la filosofía de la práctica matemática. Para ello, propone un enfoque de la práctica matemática que se fundamenta en la noción de comunidad matemática, al tiempo que evalúa el papel de la noción de metamatemática en el cambio matemático y en las prácticas matemáticas estabilizadas. Su punto de partida es un estudio de caso: la aparición de la teoría del control geométrico a principios de los años 70 y las prácticas de citación asociadas a la comunidad de la teoría del control desde mediados de los 90. En él se expone que la introducción de las herramientas geométricas en la teoría del control a finales de los años 60 condujo a un cambio en las opiniones metamatemáticas que los teóricos del control tenían de sus objetos. A continuación, se muestra cómo la pertenencia a la comunidad de la teoría del control da forma a la producción y recepción de los teoremas de Štefan, Sussmann y Nagano. Por último, la interpretación del desarrollo histórico y de las prácticas de citación de esta comunidad, a través de la perspectiva de la metamatemática, concluye con una discusión del papel del teorema de la órbita en la teoría del control, tanto como etiqueta que designa un determinado contenido cognitivo, como marcador social de pertenencia a esa comunidad.

Referencias Bibliográficas

Abraham, R.; Marsden, J. E. (1967). Foundations of Mechanics. W. A. Benjamin.

Agrachev, A. A.; Sachkov, Y. (2004). Control Theory from the Geometric Viewpoint. Springer.

Bangu, S. (Ed). (2018). Naturalizing Logico-Mathematical Knowledge: Approaches from Philosophy, Psychology and Cognitive Science. Routledge.

Barany, M. J. (2018). Integration by Parts: Wordplay, Abuses of Language, and Modern Mathematical Theory on the Move. Historical Studies in the Natural Sciences, v. 48, n. 3, 259-299. https://doi.org/10.1525/hsns.2018.48.3.259

Barany, M. J.; MacKenzie, D. (2014). Chalk: Materials and Concepts in Mathematics Research. In C. Coopman; J. Vertesi; M. Lynch; S. Woolgar (Eds.), Representation in Scientific Practice Revisited (pp. 107-129). https://doi.org/10.7551/mitpress/9780262525381.003.0006

Barnes, B.; Bloor, D.; Henry, J. (1996). Scientific Knowledge. A Sociological Analysis. University of Chicago Press.

Ben-David, J.; Collins, R. (1966). Social Factors in the Origins of a New Science: The Case of Psychology. American Sociological Review, v. 31, n. 4, 451-465. https://doi.org/10.2307/2090769

Bennett, S. (1996). History of Automatic Control to 1960: An Overview. IFAC Proceedings Volumes, v. 29, n. 1, 3008-3013. https://doi.org/10.1016/S1474-6670(17)58135-5

Bloch, A. M. (2015). Preface. In P. S. Krishnaprasad, R. M. Murray (Eds.), Nonholonomic Mechanics and Control (2nd Ed., pp. V-XI). Springer. https://doi.org/10.1007/978-1-4939-3017-3

Blondel, V. D.; Guillaume, J. L.; Lambiotte, R.; Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, v. 2008, n. 10, P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008

Bloor, D. (1973). Wittgenstein and Mannheim on the sociology of mathematics. Studies in History and Philosophy of Science Part A, v. 4, n. 2, 173-191. https://doi.org/10.1016/0039-3681(73)90003-4

Bloor, D. (1976). Knowledge and Social Imagery. University of Chicago Press.

Bos, H. J. M.; Mehrtens, H. (1977). The interactions of mathematics and society in history some exploratory remarks. Historia Mathematica, v. 4, n. 1, 7-30. https://doi.org/10.1016/0315-0860(77)90031-3

Brockett, R. (2014). The early days of geometric nonlinear control. Automatica, v. 50, n. 9, 2203-2224. https://doi.org/10.1016/j.automatica.2014.06.010

Brooks, T. A. (1986). Evidence of complex citer motivations. Journal of the American Society for Information Science, v. 37, n. 1, 34-36.

Brown, R.; Eells, J. (1981). Peter Stefan. Bulletin of the London Mathematical Society, v. 13, n. 2, 170-172. https://doi.org/10.1112/blms/13.2.170

Bullo, F.; Lewis, A. D. (2005). Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems. Springer. https://doi.org/10.1007/978-1-4899-7276-7

Candel, A.; Conlon, L. (2000). Foliations I. American Mathematical Society.

Carter, J. (2019). Philosophy of Mathematical Practice — Motivations, Themes and Prospects. Philosophia Mathematica, v. 27, n. 1, 1-32. https://doi.org/10.1093/philmat/nkz002

Cherven, K. (2013). Network Graph Analysis and Visualization with Gephi. Packt Publishing.

Corry, L. (1989). Linearity and Reflexivity in the Growth of Mathematical Knowledge. Science in Context, v. 3, n. 2, 409-440. https://doi.org/10.1017/S0269889700000880

Corry, L. (2004). Modern Algebra and the Rise of Mathematical Structures (2nd Ed). Birkhäuser. https://doi.org/10.1007/978-3-0348-7917-0

Crane, D. (1972). Invisible Colleges: Diffusion of Knowledge in Scientific Communities. University of Chicago Press.

Dahan-Dalmedico, A. (1994). Réponse à Hélène Gispert. In R. Boudon; M. Clavelin (Eds.), Le relativisme est-il résistible? Regards sur la sociologie des sciences (pp. 221-225). Presses Universitaires de France.

Dauben, J. (1995). Conceptual revolutions and the history of mathematics: Two studies in the growth of knowledge. In D. Gillies (Ed.), Revolutions in Mathematics (pp. 49-71). Clarendon Press Publication.

Dufour, J. P.; Zung, N. T. (2005). Generalities on Poisson Structures. In Poisson Structures and Their Normal Forms (pp. 1-37). Birkhäuser Basel. https://doi.org/10.1007/b137493

Dunmore, C. (1995). Meta-Level Revolutions in Mathematics. In D. Gillies (Ed.), Revolutions in Mathematics (pp. 209-225). Clarendon Press Publication.

Eades, P. (1984). A Heuristic for Graph Drawing. Congressus Numerantium, v. 42, 149-160.

Edge, D. O.; Mulkay, M. J. (1976). Astronomy Transformed: The Emergence of Radio Astronomy in Britain (Science, culture, & society). Wiley.

Elkana, Y. (1981). A Programmatic Attempt at an Anthropology of Knowledge. In E. Mendelsohn; Y. Elkana (Eds.), Sciences and Cultures: Anthropological and Historical Studies of the Sciences (pp. 1-76). Springer Netherlands. https://doi.org/10.1007/978-94-009-8429-5

Elliott, D. L. (1971). A Consequence of Controllability. Journal of Differential Equations, v. 10, n. 2, 364-370. https://doi.org/10.1016/0022-0396(71)90059-3

Ferreirós, J. (2016). Mathematical Knowledge and the Interplay of Practices. Princeton University Press.

Fisher, C. S. (1966). The death of a mathematical theory: a study in the sociology of knowledge. Archive for History of Exact Sciences, v. 3, 137-159. https://doi.org/10.1007/BF00357267

Fleck, L. (1979). Genesis and Development of a Scientific Fact. The University of Chicago Press.

Fliess, M.; Hazewinkel, M. (Eds.). (1986). Algebraic and Geometric Methods in Non-linear Control Theory. Springer. https://doi.org/10.1007/978-94-009-4706-1

Frickel, S.; Gross, N. (2005). A General Theory of Scientific/Intellectual Movements. American Sociological Review, v. 70, n. 2, 204-232. https://doi.org/10.1177/000312240507000202

Gauthier, S. (2007). La géométrie des nombres comme discipline (1890-1945) (Doctoral thesis). http://math.univ-lyon1.fr/~gauthier/recherche/theseGauthier.pdf

Gauthier, S. (2009). La géométrie dans la géométrie des nombres : histoire de discipline ou histoire de pratiques à partir des exemples de Minkowski, Mordell et Davenport. Revue d’Histoire des Mathématiques, v. 15, n. 2, 183-230.

Gingras, Y. (2010). Mapping the structure of the intellectual field using citation and co-citation analysis of correspondences. History of European Ideas, v. 36, n. 3, 330-339. https://doi.org/10.1016/j.histeuroideas.2010.04.002

Gispert, H. (2000). La capture du social dans les mathématiques et leur histoire. Revue d'histoire des sciences, v. 53, n. 2, 303-306. https://www.persee.fr/doc/rhs_0151-4105_2000_num_53_2_2088

Hamami, Y.; Morris, R. L. (2020). Philosophy of mathematical practice: a primer for mathematics educators. ZDM Mathematics Education, v. 52, n. 6, 1113-1126. https://doi.org/10.1007/s11858-020-01159-5

Hawkins, T. (2013). The Problem of Pfaff. In The Mathematics of Frobenius in Con-text: A Journey Through 18th to 20th Century Mathematics (pp. 155-204). Springer-Verlag. https://doi.org/10.1007/978-1-4614-6333-7_6

Haynes, G. W.; Hermes, H. (1970). Nonlinear Controllability via Lie Theory. SIAM Journal on Control, v. 8, n. 4, 450-460. https://doi.org/10.1137/0308033

Heintz, B. (2000). Die Innenwelt Der Mathematik. Zur Kultur und Praxis Einer beweisenden Disziplin. Springer.

Hermann, R. (1962). The Differential Geometry of Foliations, II. Journal of Mathemat-ics and Mechanics, v. 11, n. 2, 303-315.

Hermann, R. (1963). On the Accessibility Problem in Control Theory. In J. P. La Salle; S. Lefschetz (Eds.), International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics (pp. 325-332). Academic Press. https://doi.org/10.1016/B978-0-12-395651-4.50035-0

Inglis, M.; Aberdein, A. (2015). Beauty Is Not Simplicity: An Analysis of Mathematicians’ Proof Appraisals. Philosophia Mathematica, v. 23, n. 1, 87-109. https://doi.org/10.1093/philmat/nku014

Isidori, A. (1985). Nonlinear Control Systems: An Introduction. Springer-Verlag. https://doi.org/10.1007/BFb0006368

Isidori, A. (1989). Preface. In Nonlinear Control Systems: An Introduction (2nd Ed., pp. VII-IX). Springer. https://doi.org/10.1007/978-3-662-02581-9

Jurdjevic, V. (1997). Geometric Control Theory. Cambridge University Press. https://doi.org/10.1017/CBO9780511530036

Kalman, R. E. (1960a). Contributions to the Theory of Optimal Control. Boletín de la Sociedad Matemática Mexicana, v. 5, 102-119.

Kalman, R. E. (1960b). On the General Theory of Control Systems. IFAC Proceedings Volumes, v. 1, n. 1, 491-502. https://doi.org/10.1016/S1474-6670(17)70094-8

Kitcher, P. (1984). The Nature of Mathematical Knowledge. Oxford University Press. https://doi.org/10.1093/0195035410.001.0001

Knorr Cetina, K. (1999). Epistemic Cultures: How the Sciences Make Knowledge. Harvard University Press.

Knorr-Cetina, K. D.; Mulkay, M. (Eds). (1983). Science Observed: Perspectives on the Social Study of Science. SAGE Publications.

Kuhn, T. S. (1970). The Structure of Scientific Revolutions (2nd Ed., Vol. II, Num. II). University of Chicago Press.

Kuhn, T. S. (1977). Second Thoughts on Paradigms. In The Essential Tension: Selected Studies in Scientific Tradition and Change (pp. 293-319). The University of Chicago Press.

Lahire, B. (2003). From the habitus to an individual heritage of dispositions. Towards a sociology at the level of the individual. Poetics, v. 31, n. 5-6, 329-355. https://doi.org/10.1016/j.poetic.2003.08.002

Lahire, B. (2019). Sociological biography and socialisation process: A dispositionalist-contextualist conception. Contemporary Social Science, v. 14, n. 3-4, 379-393. https://doi.org/10.1080/21582041.2017.1399213

Lakoff, G.; Núñez, R. E. (2001). Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being. Basic Books.

Lavau, S. (2018). A short guide through integration theorems of generalized distributions. Differential Geometry and its Applications, v. 61, 42-58. https://doi.org/10.1016/j.difgeo.2018.07.005

Lemaine, G.; Macleod, R.; Mulkay, M.; Weingart, P. (Eds.). (2012). Perspectives on the Emergence of Scientific Disciplines. De Gruyter Mouton. https://doi.org/10.1515/9783110819038

Lemieux, C. (2012). L’écriture sociologique. In S. Paugam (Dir.), L'enquête sociologique (pp. 379-402). Presses Universitaires de France.

Leng, M.; Paseau, A.; Potter, M. (Eds). (2007). Mathematical Knowledge. Oxford University Press.

Lewis, A. D. (2018). The Bountiful Intersection of Differential Geometry, Mechanics, and Control Theory. Annual Review of Control, Robotics, and Autonomous Systems, v. 1, n. 1, 135-158. https://doi.org/10.1146/annurev-control-060117-105033

Li, K.; Rollins, J.; Yan, E. (2018). Web of Science use in published research and review papers 1997–2017: a selective, dynamic, cross-domain, content-based analysis. Scientometrics, v. 115, n. 1, 1-20. https://doi.org/10.1007/s11192-017-2622-5

Lobry, C. (1970). Contrôlabilité des Systèmes non Linéaires. SIAM Journal on Control, v. 8, n. 4, 573-605. https://doi.org/10.1137/0308042

Löwe, B.; Müller, T.; Wilhelmus, E. (2010). Mathematical knowledge: a case study in empirical philosophy of mathematics. In B. Van Kerkhove; J. De Vuyst; J. P. Van Bendegem (Eds.), Philosophical Perspectives on Mathematical Practice (pp. 185-203). College Publications.

MacKenzie, D. (1999). Slaying the Kraken: The Sociohistory of a Mathematical Proof. Social Studies of Science, v. 29, n. 1, 7-60. https://doi.org/10.1177/030631299029001002

Mancosu, P. (2008). The Philosophy of Mathematical Practice. Oxford University Press.

Mazliak, L.; Tazzioli, R. (Eds). (2021). Mathematical Communities in the Reconstruction After the Great War 1918-1928: Trajectories and Institutions. Birkhäuser. https://doi.org/10.1007/978-3-030-61683-0

Mehrtens, H. (1976). T.S. Kuhn’s theories and mathematics: A discussion paper on the “new historiography” of mathematics. Historia Mathematica, v. 3, n. 3, 297-320. https://doi.org/10.1016/0315-0860(76)90100-2

Milard, B. (2014). Réseaux et entourages citationnels en chimie: quatre types d’implications dans la recherche. L'Année sociologique, v. 64, n. 1, 15-46. https://doi.org/10.3917/anso.141.0013

Moravcsik, M. J.; Murugesan, P. (1975). Some Results on the Function and Quality of Citations. Social Studies of Science, v. 5, n. 1, 86-92. https://doi.org/10.1177/030631277500500106

Mullins, N. C. (1972). The development of a scientific specialty: The phage group and the origins of molecular biology. Minerva, v. 10, n. 1, 51-82. https://doi.org/10.1007/BF01881390

Nagano, T. (1966). Linear differential systems with singularities and an application to transitive Lie algebras. Journal of the Mathematical Society of Japan, v. 18, n. 4, 398-404. https://doi.org/10.2969/jmsj/01840398

Netz, R. (1999). The Shaping of Deduction in Greek Mathematics: A Study in Cognitive History. Cambridge University Press. https://doi.org/10.1017/CBO9780511543296

Newman, M. E. J.; Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, v. 69, n. 2, 026113. https://doi.org/10.1103/PhysRevE.69.026113

Nijmeijer, H.; van der Schaft, A. (1990). Preface. In Nonlinear Dynamical Control Systems (pp. V-IX). Springer. https://doi.org/10.1007/978-1-4757-2101-0

Paillé, P.; Mucchielli, A. (2012). L’analyse qualitative en sciences humaines et sociales. Armand Colin.

Pease, A.; Guhe, M.; Smaill, A. (2013). Developments in Research on Mathematical Practice and Cognition. Topics in Cognitive Science, v. 5, n. 2, 224-230. https://doi.org/10.1111/tops.12021

Petitot, J. (1987). Refaire le «Timée» : Introduction à la philosophie mathématique d’Albert Lautman. Revue d'histoire des sciences, v. 40, n. 1, 79-115. https://www.persee.fr/doc/rhs_0151-4105_1987_num_40_1_4488

Rav, Y. (1999). Why Do We Prove Theorems? Philosophia Mathematica, v. 7, n. 1, 5-41. https://doi.org/10.1093/philmat/7.1.5

Réale, D.; Khelfaoui, M.; Montiglio, P. O.; Gingras, Y. (2020). Mapping the dynamics of research networks in ecology and evolution using co-citation analysis (1975–2014). Scientometrics, v. 122, n. 3, 1361-1385. https://doi.org/10.1007/s11192-019-03340-4

Reichardt, J.; Bornholdt, S. (2006). Statistical mechanics of community detection. Physical Review E, v. 74, n. 1, 016110. https://doi.org/10.1103/PhysRevE.74.016110

Restivo, S. (1988). The Social Life of Mathematics. Philosophica, v. 42, n. 2, 5-20.

Rosental, C. (2008). Weaving Self-Evidence. A Sociology of Logic. Princeton University Press.

Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, v. 24, n. 4, 265-269. https://doi.org/10.1002/asi.4630240406

Sontag, E. D. (1986). Orbit Theorems and Sampling. In M. Fliess; M. Hazewinkel (Eds.), Algebraic and Geometric Methods in Nonlinear Control Theory (pp. 441-483). Springer. https://doi.org/10.1007/978-94-009-4706-1

Sontag, E. D. (1991). Kalman’s Controllability Rank Condition: From Linear to Non-linear. In A. C. Antoulas (Ed.), Mathematical System Theory: The Influence of R. E. Kalman (pp. 453-462). Springer. https://doi.org/10.1007/978-3-662-08546-2_25

Sontag, E. D.; Sussmann, H. J. (1982). Accessibility under sampling. In 21st IEEE Conference on Decision and Control. https://doi.org/10.1109/CDC.1982.268236

Stefan, P. (1973). Two proofs of Chow’s theorem. In D. Q. Mayne; R. W. Brockett (Eds.), Geometric Methods in System Theory (pp. 159-164). Springer. https://doi.org/10.1007/978-94-010-2675-8_6

Stefan, P. (1974a). Accessibility and foliations with singularities. Bulletin of the American Mathematical Society, v. 80, n. 6, 1142-1145.

Stefan, P. (1974b). Accessible Sets, Orbits, and Foliations with Singularities. Proceedings of the London Mathematical Society, v. s3-29, n. 4, 699-713. https://doi.org/10.1112/plms/s3-29.4.699

Stefan, P. (1980). Integrability of Systems of Vectorfields. Journal of the London Mathematical Society, v. s2-21, n. 3, 544-556. https://doi.org/10.1112/jlms/s2-21.3.544

Stefani, G.; Boscain, U.; Gauthier, J.-P.; Sarychev, A.; Sigalotti, M. (Eds.). (2014). Geometric Control Theory and Sub-Riemannian Geometry. Springer.

Sussmann, H. J. (1973a). Orbits of families of vector fields and integrability of systems with singularities. Bulletin of the American Mathematical Society, v. 79, n. 1, 197-199.

Sussmann, H. J. (1973b). Orbits of families of vector fields and integrability of distributions. Transactions of the American Mathematical Society, v. 180, 171-188. https://doi.org/10.1090/S0002-9947-1973-0321133-2

Sussmann, H. J. (1985). Lie brackets and real analyticity in control theory. Banach Center Publications, v. 14, n. 1, 515-542. http://eudml.org/doc/268050

Traag, V. A.; Waltman, L.; van Eck, N. J. (2019). From Louvain to Leiden: guaranteeing well-connected communities. Scientific Reports, v. 9, n. 1, 1-12. https://doi.org/10.1038/s41598-019-41695-z

Van Kerkhove, B.; Van Bendegem, J. P. (2004). The Unreasonable Richness of Mathematics. Journal of Cognition and Culture, v. 4, n. 3-4, 525-549. https://doi.org/10.1163/1568537042484913

Wallace, M. L.; Gingras, Y.; Duhon, R. (2009). A new approach for detecting scientific specialties from raw cocitation networks. Journal of the American Society for Information Science and Technology, v. 60, n. 2, 240-246. https://doi.org/10.1002/asi.20987

Warwick, A. (2003). Masters of Theory: Cambridge and the Rise of Mathematical Physics. University of Chicago Press.

Whitley, R. (2000). The Intellectual and Social Organization of the Sciences (2nd Ed.). Oxford University Press.

Zarca, B. (2009). L'ethos professionnel des mathématiciens. Revue française de sociologie, v. 50, n. 2, 351-384. https://doi.org/10.3917/rfs.502.0351

Zarca, B. (2012). L’univers des mathématiciens. L’ethos professionnel des plus rigoureux des scientifiques. Presses Universitaires de Rennes.

Cómo citar
Lavau, S. (2021). ¿Qué es un teorema (en la práctica)? El papel de la metamatemática en la construcción de las matemáticas. Trilogía Ciencia Tecnología Sociedad, 13(25), e1765. https://doi.org/10.22430/21457778.1765

Descargas

La descarga de datos todavía no está disponible.
Publicado
2021-07-14
Sección
Dosier temático
Crossref Cited-by logo