Compressed Earth Blocks (CEB) with bitumen emulsion

  • Hernán Darío Cañola Institución Universitaria Colegio Mayor de Antioquia
  • Alejandro Builes-Jaramillo Institución Universitaria Colegio Mayor de Antioquia
  • Carlos Andrés Medina Institución Universitaria Colegio Mayor de Antioquia
  • Gustavo Enrique González-Castañeda Instituto Tecnológico Metropolitano
Keywords: Capillary suction, compressed earth block, cold bitumen emulsion, water penetration, compressive strength

Abstract

Walls made of soil present serious failures due to their exposure to rain and groundwater. In addition, due to their hygroscopic characteristics, compressed earth blocks (CEBs) present low resistance to water penetration and high capillary absorption coefficients. Therefore, CEBs combined with a cold asphalt emulsion were experimentally analyzed as an alternative to reduce their capillary absorption coefficient and improve their resistance to water penetration. The emulsion was incorporated in proportions of 25%, 50%, 75% and 100% with respect to the weight of water. The capillary absorption, resistance to compression, and moisture penetration of each sample were studied in order to calculate the optimal proportion of the mixture. Based on the results, CEBs with 50% asphalt emulsion exhibit the best characteristics of protection against humidity, thus guaranteeing the compressive strength required for traditional construction.

Downloads

Download data is not yet available.

Author Biographies

Hernán Darío Cañola, Institución Universitaria Colegio Mayor de Antioquia

MSc. en Construcción, Grupo de Investigación Ambiente, Hábitat y Sostenibilidad, Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Medellín-Colombia

Alejandro Builes-Jaramillo, Institución Universitaria Colegio Mayor de Antioquia

PhD. en Ingeniería -Recursos Hidráulicos, Grupo de Investigación Ambiente, Hábitat y Sostenibilidad, Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Medellín-Colombia

Carlos Andrés Medina, Institución Universitaria Colegio Mayor de Antioquia

MSc. en Construcción, Grupo de Investigación Ambiente, Hábitat y Sostenibilidad, Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Medellín-Colombia

Gustavo Enrique González-Castañeda, Instituto Tecnológico Metropolitano

Ingeniero Civil, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano (ITM), Medellín-Colombia

References

[1] C. Egenti, J. M. Khatib, and D. Oloke, “Conceptualisation and pilot study of shelled compressed earth block for sustainable housing in Nigeria,” Int. J. Sustain. Built Environ., vol. 3, no. 1, pp. 72–86, Jun. 2014.
[2] C. Jayasinghe and N. Kamaladasa, “Compressive strength characteristics of cement stabilized rammed earth walls,” Constr. Build. Mater., vol. 21, no. 11, pp. 1971–1976, Nov. 2007.
[3] M. Hall and Y. Djerbib, “Rammed earth sample production: context, recommendations and consistency,” Constr. Build. Mater., vol. 18, no. 4, pp. 281–286, May 2004.
[4] P. Marais, J. Littlewood, and G. Karani, “The Use of Polymer Stabilised Earth Foundations for Rammed Earth Construction,” Energy Procedia, vol. 83, pp. 464–473, Dec. 2015.
[5] H. Ben Ayed, O. Limam, M. Aidi, and A. Jelidi, “Experimental and numerical study of Interlocking Stabilized Earth Blocks mechanical behavior,” J. Build. Eng., vol. 7, pp. 207–216, Sep. 2016.
[6] a. Tavares, A. Costa, F. Rocha, and A. Velosa, “Absorbent materials in waterproofing barriers, analysis of the role of diatomaceous earth,” Constr. Build. Mater., vol. 102, pp. 125–132, Jan. 2016.
[7] M. Hall and Y. Djerbib, “Moisture ingress in rammed earth: Part 2 – The effect of soil particle-size distribution on the absorption of static pressure-driven water,” Constr. Build. Mater., vol. 20, no. 6, pp. 374–383, Jul. 2006.
[8] P. Donkor and E. Obonyo, “Earthen construction materials: Assessing the feasibility of improving strength and deformability of compressed earth blocks using polypropylene fibers,” Mater. Des., vol. 83, pp. 813–819, Oct. 2015.
[9] B. Taallah, A. Guettala, S. Guettala, and A. Kriker, “Mechanical properties and hygroscopicity behavior of compressed earth block filled by date palm fibers,” Constr. Build. Mater., vol. 59, pp. 161–168, May 2014.
[10] F. Stazi, A. Nacci, F. Tittarelli, E. Pasqualini, and P. Munafò, “An experimental study on earth plasters for earthen building protection: The effects of different admixtures and surface treatments,” J. Cult. Herit., vol. 17, pp. 27–41, Jan. 2016.
[11] M. I. Beas Guerrero de Luna, “Consolidation of traditional plasters : a laboratory research,” in Conferência internacional sobre o estudo e conservaçao da arquitectura de terra, 1993, pp. 410–416.
[12] P. Doat, A. Hays, H. Houben, S. Matuk, and F. Vitoux, Construir con tierra, 2nd ed. CRAterre, 1979.
[13] M. Lanzón and P. A. García-Ruiz, “Evaluation of capillary water absorption in rendering mortars made with powdered waterproofing additives,” Constr. Build. Mater., vol. 23, no. 10, pp. 3287–3291, Oct. 2009.
[14] C. Zürcher and T. Frank, Physique du bâtiment. Construction et énergie. vdf Hochschulvlg, 2014.
[15] H. D. Cañola and C. Echavarría, “Concrete blocks with bitumen emulsion for foundation walls,” Ing. y Desarro., vol. 35, no. 2, pp. 491–512, Jun. 2017.
[16] Norma Técnica Colombiana, Bloques de suelo cemento para muros y divisiones. Definiciones. Especifícaciones. Métodos de ensayo. Condiciones de entrega: NTC 5324, ICONTEC. 2004.
[17] Asociación Española de Normalización y Certificación, UNE 83982: durabilidad del hormigón : métodos de ensayo : determinación de la absorción de agua por capilaridad del hormigón endurecido : método Fagerlund. AENOR, 2008.
[18] ASTM International, Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement concretes: ASTM C1585-04, vol. i. ASTM International, 2004.
[19] E. Adam and A. Agib, “Compressed Stabilised Earth Block Manufacture in Sudan,” Paris, France, 2001.
[20] P. Doat, A. Hays, H. Houben, S. Matuk, and F. Vitoux, Construir con tierra, 1st ed. 1979.
[21] ASTM International, “Standard test method for particle-size analysis of soils: ASTM D 422,” 2007.
[22] ASTM International, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils: ASTM D4318-17e1, vol. 04.08. ASTM International, 2017.
[23] J. L. Crissinger, CCS, and CCCA, “Measuring Moisture Resistance to Wind Driven Rain Using a RILEM Tube,” 2005.
[24] D. Vandevoorde et al., “Validation of in situ Applicable Measuring Techniques for Analysis of the Water Adsorption by Stone,” Procedia Chem., vol. 8, pp. 317–327, 2013.
[25] M. a. Wilson, M. a. Carter, and W. D. Hoff, “British standard and RILEM water absorption tests: A critical evaluation,” Mater. Struct., vol. 32, no. 8, pp. 571–578, Oct. 1999.
[26] ASTM International, Standard Test Method for Pulse Velocity Through Concrete: ASTM C597-16. ASTM International, 2018.
[27] A. Yalcin, “The effects of clay on landslides: A case study,” Appl. Clay Sci., vol. 38, no. 1–2, pp. 77–85, Dec. 2007.
[28] A. Hemmat, N. Aghilinategh, Y. Rezainejad, and M. Sadeghi, “Long-term impacts of municipal solid waste compost, sewage sludge and farmyard manure application on organic carbon, bulk density and consistency limits of a calcareous soil in central Iran,” Soil Tillage Res., vol. 108, no. 1–2, pp. 43–50, May 2010.
[29] C. Echavarría and H. D. Cañola, “Bloques de concreto con emulsión de parafina,” Lámpsakos, no. 17, pp. 14–19, 2017.
How to Cite
Darío Cañola, H., Builes-Jaramillo, A., Medina, C., & González-Castañeda, G. (2018). Compressed Earth Blocks (CEB) with bitumen emulsion. TecnoLógicas, 21(43), 135-145. https://doi.org/10.22430/22565337.1061
Published
2018-09-14
Section
Articles