The Fictitious Force Procedure: A Simile of the Equivalent One-Dimensional Potential Method in Solving the Kepler Problem

Keywords: Central forces, reduced mass, fictitious force, potential energy


An alternative procedure to the equivalent one-dimensional potential method is developed to describe the qualitative characteristics of the motion of two particles under the effect of central forces, applying it to the specific case of the Kepler problem related to the otion of the planets around the sun that is, for the inversely proportional attractive force law, the square of the distance. The new treatment called ¨Fictitious Force Method¨ is implemented in the context of Classical Mechanics and differs from the equivalent one-dimensional potential method in that instead to use the fictitious potential, the fictitious force is used; from this last perspective, it is identified that one is dealing with a simile, since it is acting within the same area of knowledge, and that it refers to a new tool with geometric characteristics to obtain qualitative solutions to the cinematic effects when you have central forces between two bodies. The simile, for the particular case treated, leads to the same results of the equivalent one-dimensional potential method that provides conic sections as trajectories for the attractive force of the inverse square between the bodies, but has the advantage that the values ​​of the force can be quantified effective for some specific orbits. Like the equivalent one-dimensional potential method, the fictive force simile can be arbitrarily applied to other central force laws and, most importantly, the procedure could show its potential in other areas of Contemporary Physics, Physical Sciences and ties to Engineering.

Author Biographies

Hernando González Sierra *, Universidad Surcolombiana, Colombia

PhD. en Física, Programa de Física, Facultad de Ciencias Exactas y Naturales, Universidad Surcolombiana, Neiva, Colombia.

Cristian Camilo Toledo Chavarro, Universidad Surcolombiana, Colombia

Físico, Facultad de Ciencias Exactas y Naturales, Grupo de Física Teórica, Universidad Surcolombiana, Neiva, Colombia,


E. A. Belbruno, “Two-body motion under the inverse square central force and equivalent geodesic flows”, Celestial mechanics, vol. 15, no. 4, pp. 467-476, 1977.

G. Heckman; T. de Laat, “On the regularization of the kepler problem”, Journal of Symplectic Geometry, vol. 10, no. 3, pp. 463-473, 2012.

M. Humi; T. Carter, “Models of Motion in a Central Force Field with Quadratic Drag”, Celestial mechanics and dynamical astronomy, vol. 84, no. 3, pp. 245-262, Nov. 2002.

T. Damour; A. Nagar, “The effective one-body description of the two-body problem”, Mass and Motion in General Relativity. Springer, Oct. 2010, pp. 211-252.

D. S. Kim; S. H. Kang, “A characterization of conic section”, Honam Mathematical Journal, vol. 33, no. 3, pp. 335-340, Sep. 2011.

J. A. López; F. J. Marco; M. J. Martínez, “A study about the integration of the elliptical orbital motion based on a special one-parametric family of anomalies”, Abstract and Applied Analysis, vol. 2014, pp. 1-11, Feb. 2014.

T. W. Ruijgrok; H. Van der Vlist, “On te hamiltonian and lagrangian formulation of classical dynamics for particles with spin,” Physica A: Statistical Mechanics and its Applications, vol. 101, no. 2-3, pp. 571-580, May. 1980.

R. Linares; M. Izquierdo, “El rescate de la princesa encerrada en lo mas alto de la mas alta torre: un episodio para aprender sobre analogías, símiles y metáforas”, El Hombre y la Máquina, no. 27, pp. 24–37, Jul. 2006.

J. M. O. Martínez; M. M. Aragón; J. Mateo; M. Bonat, “Una propuesta didáctica basada en la investigación para el uso de analogías en la enseñanza de las ciencias”, Enseñanaza de las ciencias: revista de investigación y experiencias didácticas, vol. 19, no. 3, pp. 453–470, 2001.

H. González, “Generalización de le ecuación de Bernoulli a partir de la Dinámica de Newton”, Lat. Am. J. Phys. Educ, vol. 6, no. 4, pp. 585–588, Dec. 2012.

G. F. Torres del Castillo; J. L. Calvario Acócal, “On the dynamical symmetry of the Quantum Kepler Problem”, Rev. Mex. Fís, vol. 44, no. 4, pp. 344–352, Aug. 1998.

P. K. Seidelmann et al., “Report of the IAU/IAG working group on cartographic coordinates and rotational elements of the planets and satellites: 2000”, Celestial Mechanics and Dynamical Astronomy, vol. 82, no. 1, pp. 83-111, Jan. 2002.

M. Campanelli; C. O. Lousto; P. Marronett; Y. Zlochower, “Accurate evolutions of orbiting black-hole binaries without excision”, Phys. Rev. Lett., vol. 96, no. 11, Mar. 2006.

J. P. Lasota; P. Haensel; M. A. Abramowicz, “Fast rotation of neutron stars”, arXiv preprint astro-ph/9508118, vol. 456, p. 300, Jan. 1996.

J. F. Reading; A. L. Ford, “The forced impulse method applied to the double ionisation of helium by collision with high-energy protons, antiprotons and alpha particles”, Journal of physics B: Atomic and Molecular Physics, vol. 20, no. 15, pp. 3747-3769, Aug. 1987.

N. J. Mariani; S. D. Keegan; O. M.. Martinez; G. F. Barreto, “A one-dimensional equivalent model to evaluate overall reaction rates in catalytic pellets”, Chemical Engineering Research and Design, vol. 81, no. 8, pp. 1033-1042, Sep. 2003.

C. S. Jia; Y. F. Diao; X. J. Liu; P.Q. Wang; J. Y. Liu; G. D. Zhang, “Equivalence of the Wei potential model and Tietz potential model for diatomic molecules”, The Journal of Chemical Physics, vol. 137, no. 1, Jun. 2012.

V. Martínez Rendón; C. Castaño Uribe; A. Giraldo Martínez; J. P. González Pereira; R. L. Restrepo Arango; Á. L. Morales Aramburo; C. A. Duque Echeverri, “Morse potential as a semiconductor quantum wells profile”, Revista EIA/English version, vol. 12, no. 2, pp. 85-94, 2016.

S. M. Ikhdair, “Rotation and vibration of diatomic molecule in the spatially-dependent mass Schrödinger equation with generalized q-deformed Morse potential”, Chemical Physics, vol. 361, no. 1-2, pp. 9-17, Jun. 2009.

S. Rashkovskiy, “Classical theory of the hydrogen atom,” arXiv preprint arXiv:1602.04090, pp. 1-32, 2016.

A. I. Arbab, “The generalized Newton´s law of gravitation”, Astrophysics and Space Science, vol. 325, no. 37, pp. 37-40, Oct. 2009.

H. Goldstein; C.P. Poole; J.L. Safko, Classical Mechanics, 3rd ed. Addison-Wesley, 2001.

A. E. Edison; E. O. Agbalagda; J. A. Francis; N. Maxwell, “Lagrange’s equations of motion for oscillating central-force field”, Theoretical Mathematics & Applications, vol. 3, no. 2, pp. 99-115, 2013.

J. Jagger; K. Lord, “What is centrifugal force?”, The Mathematical Gazette, vol. 79, no. 486, pp. 484-488, Nov. 1995.

V. K. Srinivasan, “Director circles of conic sections”, International Journal of Mathematical Education in Science and Technology, vol. 33, no. 5, pp. 791-800, 2002.

S. Basu, “The roles of conic sections and elliptic curves in the global dynamics of a class of planar systems of rational difference equations”, Advances in Difference Equations, vol. 2013, no. 1, pp. 292, Nov. 2013.

J. Roels; C. Aerts, “Central forces depending on the distance only. Case where all the bounded orbits are periodic”, Celestial Mechanics, vol. 44, no. 1-2, pp. 77-85, Mar. 1988.

How to Cite
González Sierra, H., & Toledo Chavarro, C. C. (2020). The Fictitious Force Procedure: A Simile of the Equivalent One-Dimensional Potential Method in Solving the Kepler Problem. TecnoLógicas, 23(49), 147-160.


Download data is not yet available.
Research Papers