New Methodology for Evaluation of Scale Inhibitor Products Based on Existing Models

Keywords: Scales, inhibitor, pH, methodology, synthetic brines

Abstract

Mineral scales are a current phenomenon in the oil industry that may be controlled to avoid expensive operational problems. To minimize these problems, it is necessary the application of chemical treatments known as inhibitors which are evaluated considering few parameters such as calcium hardness or pH. As a consequence, a methodology which jointly takes into account physicochemical properties to evaluate efficiency of calcium carbonate scale inhibitors was developed; two commercial products and one organic antiscalant derived from the cayenne mucilage were used. In the first place, an evaluative methodology schematization to be developed was carried out, based on the union of three phases: assessment using the NACE Standard TM 0374-2007, which takes into account calcium hardness; the Langelier saturation index to determine the water scaling nature and a continuous pH measurement model developed by Zhang, Wu, Li and Zhao. Later, to validate the proposal, three samples of synthetic brines were characterized, and consecutively, considering different dosages (55, 100 and 300 ppm) of the inhibitor products, the established methodology was applied. It was concluded that this new proposal allows evaluating the selected inhibitors performance in each of their stages, to accurately determine their antiscaling capacity in synthetic brines samples at different concentrations, where the mineral scales deposition of calcium carbonate (CaCO3) is expected.

Author Biographies

Valentina Hernández Pinto, Universidad de Oriente (UDO), Venezuela

Ingeniero de Petróleo, Laboratorio de Procesamiento de Hidrocarburos, Departamento de Ingeniería de Petróleo, Escuela de Ingeniería y Ciencias Aplicadas, Universidad de Oriente-Núcleo de Monagas, Maturín-Venezuela, valentinahp96@gmail.com

Manuel Rodríguez Muchati, Universidad de Oriente (UDO), Venezuela

Ingeniero de Petróleo, Laboratorio de Procesamiento de Hidrocarburos, Departamento de Ingeniería de Petróleo, Escuela de Ingeniería y Ciencias Aplicadas, Universidad de Oriente-Núcleo de Monagas, Maturín-Venezuela, mnuel1994@gmail.com

Luis Castillo Campos, Universidad de Oriente (UDO), Venezuela

MSc. en Ciencias Administrativas, Laboratorio de Procesamiento de Hidrocarburos, Departamento de Ingeniería de Petróleo, Escuela de Ingeniería y Ciencias Aplicadas, Universidad de Oriente-Núcleo de Monagas, Maturín-Venezuela, lcastillo@udo.edu.ve

References

K. Bello, "Propuesta de programa de estimulación matricial reactiva a pozos productores que presentan merma de producción por incrustaciones en el área Dación del distrito San Tomé," (Trabajo de grado), Universidad de Oriente, Anzoátegui, 2010. https://es.scribd.com/document/207036610/036-TESIS-IQ

R. W. Keatch, "Removal of sulphate scale from surfaces," Application Patent 2314865 A, January 14, 1998. https://www.lens.org/lens/patent/179-749-368-790-087

J. R. Becker, Corrosion and Scale Handbook., United States: Penn Well Publishing Company, 1998.

B. Tomaszewska; M. Tyszer, "Assessment of the influence of temperature and pressure on the prediction of the precipitation of minerals during the desalination process," Desalination, vol. 424, pp. 102-109, Dec. 2017. https://doi.org/10.1016/j.desal.2017.10.003

P. Zhang; D. Shen; G. Ruan; A. T. Kan; M. B. Tomson, "Phosphino-polycarboxylic acid modified inhibitor nanomaterial for oilfield scale control: Synthesis, characterization and migration," Journal of Industrial and Engineering Chemistry, vol. 45, pp. 366-374, Jan. 2017. https://doi.org/10.1016/j.jiec.2016.10.004

T. Kumar; S. Vishwanatham; S .S. Kundu, "A laboratory study on pteroyl-L-glutamic acid as a scale prevention inhibitor of calcium carbonate in aqueous solution of synthetic produced water," Journal of Petroleum Science and Engineering, vol. 71, no. 1-2, pp. 1-7, Mar. 2010. https://doi.org/10.1016/j.petrol.2009.11.014

D. Liu, "Research on Performance Evaluation and Anti-scaling Mechanism of Green Scale Inhibitors by Static and Dynamic Methods,"(Tesis Doctoral), Ecole nationale supérieure d'arts et métiers - ENSAM, Paris, 2011. https://pastel.archives-ouvertes.fr/pastel-00637079

E. J. Mackay; I. R. Collins; M. M. Jordan; N. Feasey, "PWRI: scale formation risk assessment and management," in The SPE 5th International Symposium on Oilfield Scale, Jan. 2003, pp. 1-18. https://doi.org/10.2118/80385-MS

P. Zhang; Y. Liu; N. Zhang; W. Fail Ip; A. T. Kan; M. B. Tomson, "A novel attach-and-release mineral scale control strategy: Laboratory investigation of retention and release of scale inhibitor on pipe surface," Journal of Industrial and Engineering Chemistry, vol. 70, pp. 462–471, Feb. 2019. https://doi.org/10.1016/j.jiec.2018.11.009

S. Baraka-Lokmane; K. S. Sorbie, "Effect of pH and scale inhibitor concentration on phosphonate–carbonate interaction," Journal of Petroleum Science and Engineering, vol. 70, pp. 10-27, 2010. https://doi.org/10.1016/j.petrol.2009.05.002

A. E. Elkholy; F. El-Taib Heakal; A. M. Rashad; K. Zakaria, "Monte Carlo simulation for guar and xanthan gums as green scale inhibitors," Journal of Petroleum Science & Engineering, vol. 166, pp. 263-273, Jul. 2018. https://doi.org/10.1016/j.petrol.2018.03.019

S. P. R. Holt; J. Sanders; K. Rodriguez; M. Vanderhoof, "Biodegrable Alternatives for Scale Control in The SPE 5th International Symposium on Oilfield Scale, Jan. 2009, pp. 1-10. https://doi.org/10.2118/121723-MS

A Viloria; L. Castillo; J. A. Garcia, M. A. Carrasquero; E. V. Torin, "Process using Aloe for inhibiting scale," United States of America, B2 Patent 8,039,421, octubre 18, 2011. https://patents.google.com/patent/US8039421B2/en

D. Malavé; T. Marín; V. Acevedo; M. Parra, "Extracto de Okra (Abelmoschus esculentus) como aditivo inhibidor de carbonato de calcio en aguas de producción del Campo El Furrial, Estado Monagas, Venezuela," Revista Tecnológica ESPOL – RTE, vol. 29, no. 2, pp. 1-11, Dec. 2016. http://www.rte.espol.edu.ec/index.php/tecnologica/article/view/416/342

A. S. Reyes Sisco; J. A. Ruiz Arenas; L. A. Castillo Campos, "Inhibidor de incrustaciones natural a base del mucílago de la hoja de cayena (Hibiscus rosa sinensis)," Enfoque UTE, vol. 10, no. 2, pp. 63-78, Jun. 2019. https://doi.org/10.29019/enfoque.v10n2.460

M. F. B. Sousa; F. Signorelli; C. A. Bertran, "Fast evaluation of inhibitors for calcium carbonate scale based on pH continuous measurements in jar test at high salinity condition," Journal of Petroleum Science and Engineering, vol. 147, pp. 468–473, Nov. 2016. http://dx.doi.org/10.1016/j.petrol.2016.09.007

National Association of Corrosion Engineers (NACE), NACE Standard TM0374-2016: Standard Test Method:Laboratory Screening Tests to Determine the Ability of Scale Inhibitors to Prevent the Precipitation of Calcium Sulfate and Calcium Carbonate from Solution (for Oil and Gas Production Systems). Houston, Texas, U.S.A: NACE, 2016. https://store.nace.org/tm0374-2016

National Association of Corrosion Engineers (NACE), NACE Standard TM0197-2019: Laboratory Screening Test to Determine the Ability of Scale Inhibitors to Prevent the Precipitation of Barium Sulfate or Strontium Sulfate, or Both, from Solution (for Oil and Gas Production Systems). https://store.nace.org/tm0197-2019-laboratory-screening-test-to-determine-the-ability-of-scale-inhibitors-to-prevent-the-precipitation-of-barium-sulfate-or-strontium-sulfate-or-both-from-solution-for-oil-and-gas-production-

D. Liu; W. Dong; F. Li, F. Hui; J. Lédion, "Comparative performance of polyepoxysuccinic acid and polyaspartic acid on scaling inhibition by static and rapid controlled precipitation methods," Desalination, vol. 304, pp. 1-10, Oct. 2012. https://doi.org/10.1016/j.desal.2012.07.032

Q. Wang et al., "Laboratory study on efficiency of three calcium carbonate scale inhibitors in the presence of EOR chemicals," Petroleum, vol. 4, no. 4, pp. 375-384, Dec. 2018. https://doi.org/10.1016/j.petlm.2018.03.003

A. Al Helal; A Soames; S. Iglauer; R. Gubner; A. Barifcani, "Evaluating chemical-scale-inhibitor performance in external magnetic fields using a dynamic scale loop," Journal of Petroleum Science and Engineering, vol. 179, pp. 1063–1077, Aug. 2019. https://doi.org/10.1016/j.petrol.2019.04.093

O. S. Sanni; O. Bukuaghangin; T. V. K. Charpentier; A. Neville, "Evaluation of laboratory techniques for assessing scale inhibition efficiency," Journal of Petroleum Science and Engineering, vol. 182, Nov. 2019. https://doi.org/10.1016/j.petrol.2019.106347

R G. M de A. Macedo et al., "Water-soluble carboxymethylchitosan as green scale inhibitor in oil wells," Carbohydrate Polymers, vol. 215, pp. 137–142, Jul. 2019. https://doi.org/10.1016/j.carbpol.2019.03.082

K. D. Demadis; P. Lykoudis, "Chemistry of Organophosphonate Scale Growth lnhibitors: 3. Physicochemical Aspects of 2-Phosphonobutane-1,2,4-Tricarboxylate (PBTC) And Its Effect on CaCO3 Crystal Growth," Bioinorganic Chemistry and Applications, vol. 3, pp. 135–149, 2005. https://doi.org/10.1155/BCA.2005.135

V. Tantayakom; H. S. Fogler; P. Charoensirithavorn; S. Chavadej, "Kinetic Study of Scale Inhibitor Precipitation in Squeeze Treatment," Crystal Growth & Design, vol. 5, pp. 329-335, Dec. 2004. https://doi.org/10.1021/cg049874d

I. Drela; P. Falewicz; S. Kuczkowska, "New rapid test for evaluation of scale inhibitors," Water Research, vol. 32, no. 10, pp. 3188-3191, Oct. 1998. https://doi.org/10.1016/S0043-1354(98)00066-9

A. P. Morizot; A. Neville, "Using an electrochemical approach for monitoring kinetics of CaCO3 and BaSO4 scale formation and inhibition on metal surfaces," SPE Journal, vol. 6, no. 2, pp. 220-223, 2001. https://doi.org/10.2118/71712-PA

J. Xiao; A. T. Kan; M. B. Tomson, "Prediction of BaSO4 precipitation in the presence and absence of a polymeric inhibitor: phosphino-polycarboxylic acid," Langmuir, vol. 17, no. 15, pp. 4668–4673, Jun. 2001. https://doi.org/10.1021/la001721e

Y. Liu et al., "An assay method to determine minera lscale inhibitor efficiency in produced water," Journal of Petroleum Science and Engineering, vol. 143, pp. 103–112, Jul. 2016. http://dx.doi.org/10.1016/j.petrol.2016.02.024

J. Y. Gal; J-C. Bollinger; H. Tolosa; N. Gache, "Calcium carbonate solubility: a reappraisal of scale formation and inhibition," Talanta, vol. 43, no. 9, pp. 1497-1509, Sep. 1996. https://doi.org/10.1016/0039-9140(96)01925-X

X. Ni Zhang; W. Long Wu; D. Mei Li; G. Jin Zhao, "A new evaluation method of scale inhibitors for controlling CaCO3 scale in reverse osmosis system based on pH measurement," Advanced Materials Research, vol. 356-360, pp. 2146-2152, 2012. http://dx.doi.org/10.4028/www.scientific.net/AMR.356-360.2146

Z. Kiaei; A Haghtalab, "Experimental study of using Ca-DTPMP nanoparticles in inhibition of CaCO3 scaling in a bulk water process," Desalination, vol. 338, pp. 84-92, Apr. 2014. https://doi.org/10.1016/j.desal.2014.01.027

H-J. Lee; M. A. Halali; T. Baker; S. Sarathy; F. de Lannoy, "A comparative study of RO membrane scale inhibitors in wastewater reclamation: Antiscalants versus pH adjustment," Separation and Purification Technology, vol. 240, Jun. 2020. https://doi.org/10.1016/j.seppur.2020.116549

E. J. Suárez-Domínguez et al., "Wells Produced Water Conditioning: stabilization for transport and reuse," in Pan American Mature Fields Congress 2015, Veracruz, México, 2015. https://www.researchgate.net/publication/323177595_Wells_Produced_Water_Conditioning_stabilization_for_transport_and_reuse

V. González Dávila; E. Suárez Domínguez, "Stabilized pipe scaling remover and inhibitor compound," United States of America, B2 Patent US 9,085,748 B2, julio 21, 2015. https://patentimages.storage.googleapis.com/b0/77/89/b220b10caa9391/US9085748.pdf

R. Ketrane; B. Saidani; O. Gil; L. Leleyter; F. Baraud, "Efficiency of five scale inhibitors on calcium carbonate precipitation from hard water: effect of temperature and concentration," Desalination, vol. 249, no. 3, pp. 1397–1404, Dec. 2009. http://dx.doi.org/10.1016/j.desal.2009.06.013

H. Semine Ras; S. Ghizellaoui, "Determination of Anti-Scale Effect of Hard Water by Test of Electrodeposition," Procedia Engineering, vol. 33, pp. 357–365, 2012. http://dx.doi.org/10.1016/j.proeng.2012.01.1215

W. F. Langelier, "Chemical equilibria in water treatment," Journal of the American Water Works Association, vol. 38, no. 2, pp. 169-178, Feb. 1946. https://www.jstor.org/stable/23349196?seq=1

National Fire Protection Association (NFPA), NFPA 704: Standard System for the Identification of the Hazards of Materials for Emergency Response. Massachusetts, U.S.A.: NFPA, 2007.

https://doi.org/10.13140/rg.2.2.32358.01608

The California Water Boards. (2020) Water Resources Control Board. en línea: https://www.waterboards.ca.gov/rwqcb5/board_decisions/tentative_orders/1507/20_breitburn/12_breitburn_pt_evid_exh_5.pdf

American Public Health Association, APHA 4500-H-+ B : Ph Electrometric Metghod. Satandar Methods for the examination of water and waterwaste. 18th ed. USA: APHA, 1992. https://www.edgeanalytical.com/wp-content/uploads/Waste_SM4500-H+.pdf

Comisión Venezolana de Normas Industriales, COVENIN 2461-87 Aguas naturales, industriales y residuales. Determinación de sólidos, Primera ed. Caracas, Venezuela: Fondonorma, 1987. https://es.scribd.com/document/381578837/2461-87-pdf

American Public Health Association, APHA 2510: Standard Methods for the Examination of Water and Waterwaste: Conductivity, 18th ed. Washington, D.C., U.S.A.: APHA, 1992. https://beta-static.fishersci.com/content/dam/fishersci/en_US/documents/programs/scientific/technical-documents/white-papers/apha-conductivity-standard-methods-white-paper.pdf

American Public Health Association, APHA 2320 A: Standard Methods for the Examination of Water and Waterwaste: Alkalinity, 18th ed. Washington, D.C., U.S.A: APHA, 1992. https://law.resource.org/pub/us/cfr/ibr/002/apha.method.2320.1992.html

American Public Health Association, APHA 3500 CA: Standard Methods for the Examination of Water and Waterwaste: Calcium, 18th ed. Washington, D.C., U.S.A.: APHA, 1992. https://law.resource.org/pub/us/cfr/ibr/002/apha.method.3500-ca.1992.html

American Public Health Association, APHA 4500 CIA: Standard Methods for the Examination of Water and Waterwaste: Chlorine, 18th ed. Washington, D.C., U.S.A.: APHA, 1992. https://beta-static.fishersci.com/content/dam/fishersci/en_US/documents/programs/scientific/technical-documents/white-papers/apha-free-total-chlorine-standard-methods-white-paper.pdf

M. Crabtree; D. Eslinger; P. Fletcher; M. Millet; A. Johnson; G. King, "La lucha contra las incrustaciones - remoción y prevención," Oilfield Review Magazine, pp. 30-49, 1999. https://www.slb.com/-/media/files/oilfield-review/p30-49

J. Martín Porras; P. López Guerrero; C. Álvarez Fernandez; A. Fernandez Uría; M. V. Gimeno, Calidad y contaminación de aguas subterráneas en España. España: IGME, 1985. http://aguas.igme.es/igme/publica/libro43/lib43.htm

N. F. Gray, Water Technology: An Introduction for Environmental Scientists and Engineers, Second edition ed. U.S.A.: Butterworth-Heinemann, 2005. https://es.scribd.com/document/127820297/Water-Technology-An-Introduction-for-Environmental-Scientists-and-Engineers-by-N-F-Gray

Environmental Protection Agency (EPA), Guidelines Establishing Test Procedures for the Analysis of Pollutants under the clean Water Act; Analysis and Sampling Procedures. U.S.A.: Environmental Protection Agency, 2013. https://www.federalregister.gov/documents/2013/03/06/2013-05248/guidelines-establishing-test-procedures-for-the-analysis-of-pollutants-under-the-clean-water-act

S. I. Armendáriz et al., "Estudio de la precipitación de carbonato de calcio en un destilador solar experimental," Revista Internacional de Contaminación Ambiental, vol. 21, no. 1, pp. 5-15, 2005. https://www.redalyc.org/pdf/370/37021101.pdf

Z. Quan; Y. Chang Chen; X. Rong Wang; C. Shi; Y. J. Liu; C. Fang Ma "Experimental study on scale inhibition performance of a green scale inhibitor polyaspartic acid," Science in China Series B: Chemistry, vol. 51, pp. 695-699, Jun. 2008. https://doi.org/10.1007/s11426-008-0063-y

G. Suo; l. Xie; S- Xu; L. Feng; T. Dong; X. Shao, "Study on inhibitors' performance under the condition of high concentration ratio in MED system," Desalination, vol. 437, pp. 100–107, Jul. 2018. https://doi.org/10.1016/j.desal.2018.02.019

J. W. Mullin, Crystallization, 4th ed. Woburn: Butterworth-Heinemann, 2001. https://doi.org/10.1016/B978-0-7506-4833-2.X5000-1

D. Konopacka-Łyskawa; B. Koscielska; J. Karczewski; A. Gołabiewska, "The influence of ammonia and selected amines on the characteristics of calcium carbonate precipitated from calcium chloride solutions via carbonation," Materials Chemistry and Physics, vol. 193, pp. 13-18, Jun. 2017. http://dx.doi.org/10.1016/j.matchemphys.2017.01.060

How to Cite
Hernández Pinto, V., Rodríguez Muchati, M., & Castillo Campos, L. (2020). New Methodology for Evaluation of Scale Inhibitor Products Based on Existing Models. TecnoLógicas, 23(49), 161-184. https://doi.org/10.22430/22565337.1648

Downloads

Download data is not yet available.
Published
2020-09-15
Section
Research Papers