Classification of Cocoa Beans Based on their Level of Fermentation using Spectral Information

Keywords: Cocoa beans, level of fermentation, hyperspectral images, spectral classification, superpixel

Abstract

Cocoa beans are the most important raw material for the chocolate industry and an essential product for the economy of tropical countries such as Colombia. Their price mainly depends on their quality, which is determined by various aspects, such as good agricultural practices, their harvest point, and level of fermentation. The entities that regulate the international marketing of cocoa beans have been encouraging the development of new classification methods that, compared to current techniques, could save time, reduce waste, and increase the number of evaluated beans. In particular, hyperspectral images are a novel tool for food quality control. However, studies that have examined some quality parameters of cocoa using spectroscopy also involve the chemical evaluation of cocoa powder and liquor and the interior of the beans, which implies an invasive analysis, longer times, and waste generation. Therefore, in this paper, we assess the quality of cocoa beans based on their level of fermentation using a noninvasive system to obtain hyperspectral information, as well as fast image processing and spectral classification techniques. We obtained hyperspectral images of 90 cocoa beans in the range between 350 and 950 nm in an optical laboratory. In addition, each cocoa bean was classified according to its fermentation level: slightly fermented (SF), correctly fermented (CF), and highly fermented (HF). We compared this classification with that carried out by experts from the Colombia National Federation of Cocoa Growers and reported in the Colombian technical standard No. 1252. The results show that the level of fermentation of dried cocoa beans can be estimated using noninvasive hyperspectral image acquisition and processing techniques.

Author Biographies

Karen Sánchez*, Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Santander-Colombia, karen.sanchez2@correo.uis.edu.co

Jorge Bacca, Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Santander-Colombia, jorge.bacca1@correo.uis.edu.co

Laura Arévalo-Sánchez, Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Santander-Colombia, laura.arevalo4@correo.uis.edu.co

Henry Arguello, Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Santander-Colombia, henarfu@uis.edu.co

Sergio Castillo, Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Santander-Colombia, scastill@uis.edu.co

References

E. Lecumberri et al., “Dietary fibre composition, antioxidant capacity and physico-chemical properties of a fibre-rich product from cocoa (Theobroma cacao L.) Food chemistry, vol. 104, no. 3, pp. 948-954, 2017. https://doi.org/10.1016/j.foodchem.2006.12.054

M. S. Beg; S. Ahmed; K. Jan; K. Bashir, “Status, supply chain and processing of cocoa - A review,” Trends in food science & technology, vol. 66, pp. 108-116, Ago. 2017. https://doi.org/10.1016/j.tifs.2017.06.007

J. C. Motamayor et al. “Geographic and Genetic Population Differentiation of the Amazonian Chocolate Tree (Theobroma cacao L),” PloS one, vol. 3, no 10, Oct. 2008. https://doi.org/10.1371/journal.pone.0003311

M. Torres-Moreno; E. Torrescasana; J. Salas- Savadó; C. Blanch, “Nutritional composition and fatty acids profile in cocoa beans and chocolates with different geographical origin and processing conditions,” Food chemistry, vol. 166, pp. 125-132. Jan. 2015. https://doi.org/10.1016/j.foodchem.2014.05.141

A. Wickramasuriya; J. Dunwell, “Cacao biotechnology: current status and future prospects,” Plant biotechnology journal, vol. 16, no. 1, pp. 4-17, Jan. 2018.https://doi.org/10.1111/pbi.12848

R. Saltini; R. Akkerman; S. Frosch, “Optimizing chocolate production through traceability: A review of the influence of farming practices on cocoa bean quality,” Food control, vol. 29, no. 1, pp. 167-187, Jan. 2013. https://doi.org/10.1016/j.foodcont.2012.05.054

C. N. Tejada-Tovar; A. Villabona-Ortíz; G. Alvarez-Bajaire; L. attin-Torres; C. Granados-Conde, “Influencia de la altura del lecho sobre el comportamiento dinámico de columna de lecho fijo en la biosorción de mercurio,” TecnoLógicas, vol. 20, no 40, p. 71-81, Sep. 2017. https://doi.org/10.22430/22565337.706

A. Friedel Hütz; C. Huber; I. Knoke; P. Morazán; M. Mürlebach, “Strengthening the competitiveness of cocoa production and improving the income of cocoa producers in West and Central Africa,” Bonn, Germany: Südwind, 2016. https://suedwind-institut.de/files/Suedwind/Publikationen/2017/2017-06%20Strengthening%20the%20competitiveness%20of%20cocoa%20production%20and%20improving%20the%20income%20of%20cocoa%20producers%20in%20West%20and%20Central%20Africa.pdf

J. Lernoud et al., “The state of sustainable markets-statistics and emerging trends 2015,” Report. 29694 Mar. 2016. https://orgprints.org/29694/

J. E. Kongor et al., “Constraints for future cocoa production in Ghana,” Agroforestry Systems, vol. 92, no. 5, pp. 1373-1385, Oct. 2018. https://doi.org/10.1007/s10457-017-0082-9

R. Swaray, “Commodity buffer stock redux: The role of International Cocoa Organization in prices and incomes,” Journal of Policy Modeling, vol. 33, no. 3, pp. 361-369, May. 2011. https://doi.org/10.1016/j.jpolmod.2011.03.002

M. Squicciarini; J. Swinnen, The economics of chocolate, Oxford University Press, 2016.

Instituto Colombiano de Normalización y Certificación–ICONTEC-. “Norma Técnica Colombiana NTC 1252: Cacao en grano,” 2003. https://pdfslide.net/documents/ntc-1252-cacao-en-grano.html

S. Jinap; P. S. Dimick; R. Hollender, “Flavour evaluation of chocolate formulated from cocoa beans from different countries,” Food Control, vol. 6, no. 2, pp. 105-110, 1995. https://doi.org/10.1016/0956-7135(95)98914-M

P. C. Aculey et al. “Ghanaian cocoa bean fermentation characterized by spectroscopic and chromatographic methods and chemometrics,” Journal of Food Science, vol. 75, no. 6, pp. S300-S307, Aug. 2010. https://doi.org/10.1111/j.1750-3841.2010.01710.x

A. A. Gowen; C. P. O´Donell; P. J. Cullen; G. Downey; J. M. Frias, “Hyperspectral imaging–an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol, vol. 18, no. 12, pp. 590-598, Dec. 2007. https://doi.org/10.1016/j.tifs.2007.06.001

J. Qin; K. Chao; M. S. Kim; R. Lu; T. F. Burks, “Hyperspectral and multispectral imaging for evaluating food safety and quality,” Journal of Food Engineering, vol. 118, no. 2, pp. 157-171, Sep. 2013. https://doi.org/10.1016/j.jfoodeng.2013.04.001

H. Huang; L. Liu; M. O. Ngadi, “Recent developments in hyperspectral imaging for assessment of food quality and safety,” Sensors, vol. 14, no. 4, pp. 7248-7276, Apr. 2014. https://doi.org/10.3390/s140407248

C. Garrido-Novell et al. “Grading and color evolution of apples using RGB and hyperspectral imaging vision cameras,” Journal of Food Engineering, vol. 113, no. 2, pp. 281-288, Nov. 2012. https://doi.org/10.1016/j.jfoodeng.2012.05.038

J. M. Bioucas-Dias et al. “Hyperspectral remote sensing data analysis and future challenges,” IEEE Geoscience and remote sensing magazine, vol. 1, no. 2, pp. 6-36, Jul. 2013. https://doi.org/10.1109/MGRS.2013.2244672

G. A. Shaw; H. K. Burke, “Spectral imaging for remote sensing,” Lincoln laboratory journal, vol. 14, no. 1, pp. 3-28, 2003. https://courses.cs.washington.edu/courses/cse591n/07sp/papers/Shaw2003.pdf

J. Bacca; C. A. Hinojosa; H. Arguello, “Kernel sparse subspace clustering with total variation denoising for hyperspectral remote sensing images,” Mathematics in Imaging. Optical Society of America, 2017. p. MTu4C. 5. 2017. https://doi.org/10.1364/MATH.2017.MTu4C.5

C. I. Chang, “Hyperspectral imaging: techniques for spectral detection and classification,” Springer Science & Business Media, vol. 1, 2003.

H. Cen; Y. He, “Theory and application of near infrared reflectance spectroscopy in determination of food quality,” Trends in Food Science & Technology, vol. 18, no. 2, pp. 72-83, Feb. 2007. https://doi.org/10.1016/j.tifs.2006.09.003

J. Pinto; H. Rueda-Chacón; H. Arguello, “Classification of Hass avocado (persea americana mill) in terms of its ripening via hyperspectral images,” TecnoLógicas, vol. 22, no. 45, pp. 111-130, May. 2019. https://doi.org/10.22430/22565337.1232

J. Bacca; H. Arguello, “Sparse Subspace Clustering for Hyperspectral Images using Incomplete Pixels.” TecnoLógicas, vol. 22, no. 46, pp. 6-19, Sep. 2019. http://dx.doi.org/10.22430/22565337.1205

S. Sunoj; C. Igathinathane; R. Visvanathan, “Nondestructive determination of cocoa bean quality using FT-NIR spectroscopy,” Computers and Electronics in Agriculture, vol. 124, pp. 234-242, Jun. 2016. https://doi.org/10.1016/j.compag.2016.04.012

A. Veselá et al., “Infrared spectroscopy and outer product analysis for quantification of fat, nitrogen, and moisture of cocoa powder,” Analytica chimica acta, vol. 601, no. 1, pp. 77-86, Oct. 2007. https://doi.org/10.1016/j.aca.2007.08.039

C. Hue et al., “Near infrared spectroscopy as a new tool to determine cocoa fermentation levels through ammonia nitrogen quantification,” Food chemistry, vol. 148, pp. 240-245, Apr. 2014. https://doi.org/10.1016/j.foodchem.2013.10.005

A. Krähmer et al. “Fast and neat-Determination of biochemical quality parameters in cocoa using near infrared spectroscopy,” Food Chemistry, vol. 181, pp. 152-159, Aug. 2015. https://doi.org/10.1016/j.foodchem.2015.02.084

E. Teye; X. yi- Huang; W. Lei; H. Dai, “Feasibility study on the use of Fourier transform near-infrared spectroscopy together with chemometrics to discriminate and quantify adulteration in cocoa beans,” Food research international, vol. 55, pp. 288-293, Jan. 2014. https://doi.org/10.1016/j.foodres.2013.11.021

E. Teye et al. “Estimating cocoa bean parameters by FT-NIRS and chemometrics analysis,” Food chemistry, vol. 176, pp. 403-410, Jun. 2015. https://doi.org/10.1016/j.foodchem.2014.12.042

P. D. Tran et al. “Assessing cocoa aroma quality by multiple analytical approaches,” Food Research International, vol. 77, no. 3, pp. 657-669, Nov. 2015. https://doi.org/10.1016/j.foodres.2015.09.019

N. A. Gomez; K. Sanchez; H. Arguello, “Non-Destructive Method for Classification of Cocoa Beans from Spectral Information,” 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), IEEE, Bucaramanga, 2019. https://doi.org/10.1109/STSIVA.2019.8730257

R. Achanta et al. “SLIC superpixels compared to state-of-the-art superpixel methods,” IEEE transactions on pattern analysis and machine intelligence, vol. 34, no. 11, pp. 2274-2282, May. 2012. https://doi.org/10.1109/TPAMI.2012.120

H. Garcia; C. V. Correa; O. Villarreal; S. Pinilla: H. Arguello, “Multi-resolution reconstruction algorithm for compressive single pixel spectral imaging,” 25th European Signal Processing Conference (EUSIPCO). IEEE, pp. 468-472, Kos, 2017. https://doi.org/10.23919/EUSIPCO.2017.8081251

A. Jerez; H. Garcia; H. Arguello, “Spectral image fusion for increasing the spatio-spectral resolution through side information,” IEEE Colombian Conference on Applications in Computational Intelligence. Springer, Cham, vol. 833, pp. 165-176, 2018. https://doi.org/10.1007/978-3-030-03023-0_14

H. Garcia; C. V. Correa; K. Sánchez; E. Vargas; H. Arguello, “Multi-resolution coded apertures based on side information for single pixel spectral reconstruction,” 26th European Signal Processing Conference (EUSIPCO). IEEE, pp. 2215-2219, Rome. 2018. https://doi.org/10.23919/EUSIPCO.2018.8553602

K. Sanchez; C. Hinojosa; H. Arguello, “Supervised spatio-spectral classification of fused images using superpixels,” Applied optics, vol. 58, no. 7, pp. B9-B18, 2019. https://doi.org/10.1364/AO.58.0000B9

C. Hinojosa; K. Sánchez; H. García; H. Arguello, “Cocoa beans spectral image with three fermentation levels”. IEEE Dataport, 2019. http://dx.doi.org/10.21227/esks-4b74

L. Frey et al., “Color filters including infrared cut-off integrated on CMOS image sensor,” Optics Express, vol. 19, no. 14, pp. 13073-13080, 2011. https://doi.org/10.1364/OE.19.013073

B. Schlkopf; A. J. Smola; F. Bach, Learning with kernels: support vector machines, regularization, optimization, and beyond, the MIT Press, 2018.

G. Mountrakis; J. Im; C. Ogole, “Support vector machines in remote sensing: A review,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66, no. 3, pp. 247-259, May. 2011. https://doi.org/10.1016/j.isprsjprs.2010.11.001

C. Beleites; R. Salzer; V. Sergo, “Validation of soft classification models using partial class memberships: An extended concept of sensitivity & co. applied to grading of astrocytoma tissues,” Chemometrics and Intelligent Laboratory Systems, vol. 122, pp. 12-22, Mar. 2013. https://doi.org/10.1016/j.chemolab.2012.12.003

How to Cite
Sánchez, K., Bacca, J., Arévalo-Sánchez, L., Arguello, H., & Castillo, S. (2021). Classification of Cocoa Beans Based on their Level of Fermentation using Spectral Information. TecnoLógicas, 24(50), e1654. https://doi.org/10.22430/22565337.1654

Downloads

Download data is not yet available.
Published
2021-01-30
Section
Research Papers

Funding data

More on this topic