Operación integrada de redes de distribución de energía y gas natural: un análisis de confiabilidad

Palabras clave: Análisis de confiabilidad, red de distribución de energía, red de gas natural, sistema de energía integrado

Resumen

Actualmente, el mundo enfrenta un gran desafío y es lograr una producción sustentable de energía que permita el adecuado desarrollo de la humanidad pero que al mismo tiempo no afecte irreversiblemente al medio ambiente. Para ello, es absolutamente necesario hacer un uso óptimo y efectivo de los recursos energéticos disponibles, con el fin de apuntar a objetivos de una transición energética que resulten en un uso racional y eficiente de la energía, la penetración de los recursos renovables y el desarrollo social. Esto requiere que a nivel técnico se propongan metodologías que permitan un análisis holístico de las diferentes interacciones y sinergias presentes en el sistema energético. Por ello, es fundamental profundizar en el conocimiento asociado a la interacción entre las redes de electricidad y gas natural, ya que se espera que el gas natural sea la fuente energética que sustente el incremento de la generación a partir de fuentes renovables intermitentes. Por lo anterior, en este trabajo de investigación se analiza la confiabilidad de la red de distribución de energía eléctrica a partir del impacto asociado a una contingencia en la red de distribución de gas natural, cuando ambas redes se acoplan a través de generadores de energía distribuida a base de gas natural. Para su estimación se utiliza un novedoso índice de energía no suministrada y un criterio de contingencia sencilla, considerando tasas de falla y tiempos de reparación de la red de gas natural para obtener una mayor precisión en la estimación. Los resultados numéricos muestran que una penetración significativa de la generación distribuida basada en gas natural puede comprometer la confiabilidad de la red de distribución de energía si la red de gas natural es de baja confiabilidad.

Biografía del autor/a

Carlos A. Saldarriaga Cortés , Universidad Tecnológica de Pereira, Colombia

Universidad Tecnológica de Pereira, Pereira-Colombia, casaldarriaga@utp.edu.co 

Ricardo A. Hincapié Isaza*, Universidad Tecnológica de Pereira, Colombia

Universidad Tecnológica de Pereira, Pereira-Colombia, ricardohincapie@utp.edu.co

Harold Salazar , Universidad Tecnológica de Pereira, Colombia

Universidad Tecnológica de Pereira, Pereira-Colombia, hsi@utp.edu.co

Referencias bibliográficas

C. A. Saldarriaga, R. A. Hincapié, and H. Salazar, “A Holistic Approach for Planning Natural Gas and Electricity Distribution Networks,” IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4052–4063, Nov. 2013, https://doi.org/10.1109/TPWRS.2013.2268859

Z. Haidar, A. Waqar, N. A. Shah, and K. Al-Mutib, “Optimal Power Flow Using Distributed Generation and Conservation Voltage Reduction Techniques for Micro-Grids,” in 2018 International Conference on Emerging Trends and Innovations In Engineering And Technological Research (ICETIETR), Jul. 2018, pp. 1–6. https://doi.org/10.1109/ICETIETR.2018.8529139

T. Prasetyo, S. Sarjiya, and L. M. Putranto, “Optimal Sizing and Siting of PV-Based Distributed Generation for Losses Minimization of Distribution using Flower Pollination Algorithm,” in 2019 International Conference on Information and Communications Technology (ICOIACT), Jul. 2019, pp. 779-783. https://doi.org/10.1109/ICOIACT46704.2019.8938424

P. Charles, F. Mehazzem, and T. Soubdhan, “Comparative study between Interior Point and Particle Swarm methods for Optimal Renewable Distributed Generation location,” in 2020 6th International Conference on Electric Power and Energy Conversion Systems (EPECS), Oct. 2020, pp. 40–45. https://doi.org/10.1109/EPECS48981.2020.9304522

K. Moloi, J. A. Jordaan, and Y. Hamam, “Optimal Power Grid Integration With Distributed Generation Using Genetic Algorithm,” in 2021 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA), Jan. 2021, pp. 1–5. https://doi.org/10.1109/SAUPEC/RobMech/PRASA52254.2021.9377023

A. C. Neto, M. G. da Silva, and A. B. Rodrigues, “Impact of Distributed Generation on Reliability Evaluation of Radial Distribution Systems Under Network Constraints,” in 2006 International Conference on Probabilistic Methods Applied to Power Systems, Jun. 2006, pp. 1–6. https://doi.org/10.1109/PMAPS.2006.360421

M. E. Samper and R. A. Reta, “Regulatory Analysis of Distributed Generation installed by Distribution Utilities,” IEEE Latin America Transactions, vol. 13, no. 3, pp. 665–672, Mar. 2015, https://doi.org/10.1109/TLA.2015.7069090

B. Odetayo, J. MacCormack, W. D. Rosehart, H. Zareipour, and A. R. Seifi, “Integrated planning of natural gas and electric power systems,” International Journal of Electrical Power & Energy Systems, vol. 103, pp. 593–602, Dec. 2018, https://doi.org/10.1016/j.ijepes.2018.06.010

J. Duan, Y. Yang, and F. Liu, “Distributed optimization of integrated electricity-natural gas distribution networks considering wind power uncertainties,” International Journal of Electrical Power & Energy Systems, vol. 135, p. 107460, Feb. 2022, https://doi.org/10.1016/j.ijepes.2021.107460

A. Safari, M. Farrokhifar, H. Shahsavari, and V. Hosseinnezhad, “Stochastic planning of integrated power and natural gas networks with simplified system frequency constraints,” International Journal of Electrical Power & Energy Systems, vol. 132, p. 107144, Nov. 2021, https://doi.org/10.1016/j.ijepes.2021.107144

J. Munoz, N. Jimenez-Redondo, J. Perez-Ruiz, and J. Barquin, “Natural gas network modeling for power systems reliability studies,” in 2003 IEEE Bologna Power Tech Conference Proceedings, 2003, vol. 4, pp. 20–27. https://doi.org/10.1109/PTC.2003.1304696

M. Shahidehpour, Y. Fu, and T. Wiedman, “Impact of Natural Gas Infrastructure on Electric Power Systems,” Proceedings of the IEEE, vol. 93, no. 5, pp. 1042–1056, May 2005, https://doi.org/10.1109/JPROC.2005.847253

W. Yu et al., “An integrated gas supply reliability evaluation method of the large-scale and complex natural gas pipeline network based on demand-side analysis,” Reliab Eng Syst Saf, vol. 212, p. 107651, Aug. 2021, https://doi.org/10.1016/j.ress.2021.107651

E. N. Dialynas, T. D. Diagoupis, and L. G. Daoutis, “Reliability Assessment of Natural Gas Transmission Systems and their Impact on the Operational Performance of Electric Power Systems,” in 8th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2012), Oct. 2012, pp. 1–7. https://doi.org/10.1049/cp.2012.2029

Y. Zhu, P. Wang, Y. Wang, R. Tong, B. Yu, and Z. Qu, “Assessment method for gas supply reliability of natural gas pipeline networks considering failure and repair,” J Nat Gas Sci Eng, vol. 88, p. 103817, Apr. 2021, https://doi.org/10.1016/j.jngse.2021.103817

A. Ratha, A. Schwele, J. Kazempour, P. Pinson, S. S. Torbaghan, and A. Virag, “Affine Policies for Flexibility Provision by Natural Gas Networks to Power Systems,” Electric Power Systems Research, vol. 189, p. 106565, Dec. 2020, https://doi.org/10.1016/j.epsr.2020.106565

C. Wang, P. Ju, F. Wu, S. Lei, and Y. Hou, “Coordinated scheduling of integrated power and gas grids in consideration of gas flow dynamics,” Energy, vol. 220, p. 119760, Apr. 2021, https://doi.org/10.1016/j.energy.2021.119760

Z. Cui, J. Chen, C. Liu, and H. Zhao, “Time-domain continuous power flow calculation of electricity–gas integrated energy system considering the dynamic process of gas network,” Energy Reports, vol. 8, sup. 5, pp. 597–605, Aug. 2022, https://doi.org/10.1016/j.egyr.2022.02.238

Y. Jiang, Z. Ren, X. Yang, Q. Li, and Y. Xu, “A steady-state energy flow analysis method for integrated natural gas and power systems based on topology decoupling,” Appl Energy, vol. 306, p. 118007, Part. A, Jan. 2022, https://doi.org/10.1016/j.apenergy.2021.118007

S. Cabrales, C. Valencia, C. Ramírez, A. Ramírez, J. Herrera, and A. Cadena, “Stochastic cost-benefit analysis to assess new infrastructure to improve the reliability of the natural gas supply,” Energy, vol. 246, p. 123421, May 2022, https://doi.org/10.1016/j.energy.2022.123421

A. Helseth and A. T. Holen, “Reliability modeling of gas and electric power distribution systems; similarities and differences,” in 2006 International Conference on Probabilistic Methods Applied to Power Systems, Jun. 2006, pp. 1–5. https://doi.org/10.1109/PMAPS.2006.360422

R. Billinton and R. N. Allan, Reliability evaluation of power systems, 2nd ed. New York, USA: Plenum Press, 1996. [Online]. Available: https://www.academia.edu/39091300/Reliability_Evaluation_of_Power_Systems_Second_Edition

IEEE, “IEEE Guide for Electric Power Distribution Reliability Indices,” IEEE Std 1366-2012 (Revision of IEEE Std 1366-2003), pp. 1–43, May. 2012, [Online]. Available: https://ieeexplore.ieee.org/document/6209381

Cómo citar
[1]
C. A. Saldarriaga Cortés, R. A. Hincapié Isaza, y H. Salazar, «Operación integrada de redes de distribución de energía y gas natural: un análisis de confiabilidad», TecnoL., vol. 25, n.º 55, p. e2359, nov. 2022.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2022-11-18
Sección
Artículos de investigación

Métricas

Crossref Cited-by logo