Rectenna de doble banda para la captación de energía inalámbrica en las bandas de 2.40 GHz y 5.38 GHz

Palabras clave: Antenas microcinta, circuito rectificador, red de área local inalámbrica, transmisión inalámbrica de energía, Wi-Fi

Resumen

El objetivo de este estudio, plasmado en este documento, fue implementar una rectenna para aplicaciones de área local inalámbrica 2.45 GHz y 5.38 GHz. Para ello, se estableció que las dimensiones de la antena fueran de 18 mm × 44 mm, la cual se simula mediante el software de optimización CST Studio, fabricada en sustrato FR4 con grosor de 1.6 mm, donde el material conductor posee un espesor de 0.035 mm. Asimismo, se utilizó la técnica de ranuras rectangulares para mejorar el ancho de banda de la antena; esta técnica consiste en insertar ranuras en la estructura con el fin de modificar el desplazamiento de la corriente de superficie. Lo anterior presentó una ganancia de 2.49 dB en la frecuencia de 2.45 GHz y de 4.01 dB en la frecuencia de 5.38 GHz. La antena propuesta para aplicaciones de recolección de energía de RF exhibe un patrón de radiación tipo dipolo, el cual mejora la captura de energía de RF desde varias direcciones. El rectificador de triple banda ranurada con red de adaptación de impedancia en forma de T se diseñó en FR4, utilizando un diodo Schotkky HSMS-286C para el cambio de control de RF AC a DC. Como fuente emisora de RF se empleó un enrutador inalámbrico tp-link TL-WR940N a una distancia de 30 cm de separación entre este y la rectenna propuesta. La salida de corriente continua de la rectenna es de 3 voltios con una potencia de señal generada de 20 dBm a 2.4 GHz. La rectenna de bajo coste puede ser utilizada para aplicaciones de carga de energía en sistemas de la internet de las cosas (IoT).

Biografía del autor/a

Edison Andrés Zapata Ochoa*, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, edisonzapata110337@correo.itm.edu.co

Francisco López Giraldo , Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, franciscolopez@itm.edu.co

Germán David Góez , Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, germangoez@itm.edu.co

Referencias bibliográficas

S. Zeadally, F. K. Shaikh, A. Talpur, and Q. Z. Sheng, “Design architectures for energy harvesting in the Internet of Things,” Renewable and Sustainable Energy Reviews, vol. 128, p. 109901, Aug. 2020, https://doi.org/10.1016/j.rser.2020.109901

M. Cansiz, D. Altinel, and G. K. Kurt, “Efficiency in RF energy harvesting systems: A comprehensive review,” Energy, vol. 174, pp. 292–309, May 2019, https://doi.org/10.1016/j.energy.2019.02.100

R. K. Sidhu, J. Singh Ubhi, and A. Aggarwal, “A Survey Study of Different RF Energy Sources for RF Energy Harvesting,” in 2019 International Conference on Automation, Computational and Technology Management (ICACTM), Apr. 2019, pp. 530–533. https://doi.org/10.1109/ICACTM.2019.8776726

W. Saeed, N. Shoaib, H. M. Cheema, and M. U. Khan, “RF Energy Harvesting for Ubiquitous, Zero Power Wireless Sensors,” Int J Antennas Propag, vol. 2018, pp. 1–16, Apr. 2018, https://doi.org/10.1155/2018/8903139

M. Piñuela, P. D. Mitcheson, and S. Lucyszyn, “Ambient RF Energy Harvesting in Urban and Semi-Urban Environments,” in IEEE Trans Microw Theory Tech, vol. 61, no. 7, pp. 2715–2726, Jul. 2013, https://doi.org/10.1109/TMTT.2013.2262687

N. Md. Din, C. K. Chakrabarty, A. Bin Ismail, K. K. A. Devi, and W.-Y. Chen, “Design of RF Energy Harvesting System for Energizing Low Power Devices,” Progress In Electromagnetics Research, vol. 132, pp. 49–69, Sep. 2012, https://doi.org/10.2528/PIER12072002

T.-L. Nguyen, Y. Sato, and K. Ishibashi, “7.6 µW Ambient Energy Harvesting Rectenna from LTE Mobile phone Signal for IoT Applications,” in 2020 International Conference on Advanced Technologies for Communications (ATC), Oct. 2020, pp. 45–49. https://doi.org/10.1109/ATC50776.2020.9255471

V. Talla, S. Pellerano, H. Xu, A. Ravi, and Y. Palaskas, “Wi-Fi RF energy harvesting for battery-free wearable radio platforms,” in 2015 IEEE International Conference on RFID (RFID), Apr. 2015, pp. 47–54. https://doi.org/10.1109/RFID.2015.7113072

S. Muhammad et al., “Harvesting Systems for RF Energy: Trends, Challenges, Techniques, and Tradeoffs,” Electronics (Basel), vol. 11, no. 6, p. 959, Mar. 2022, https://doi.org/10.3390/electronics11060959

Q. Awais, Y. Jin, H. T. Chattha, M. Jamil, H. Qiang, and B. A. Khawaja, “A Compact Rectenna System With High Conversion Efficiency for Wireless Energy Harvesting,” IEEE Access, vol. 6, pp. 35857–35866, Jun. 2018, https://doi.org/10.1109/ACCESS.2018.2848907

K. Shafique et al., “Energy Harvesting Using a Low-Cost Rectenna for Internet of Things (IoT) Applications,” in IEEE Access, vol. 6, pp. 30932–30941, May. 2018, https://doi.org/10.1109/ACCESS.2018.2834392

D. H. Sadek, H. A. Shawkey, and A. A. Zekry, “Compact and High-Efficiency Rectenna for Wireless Power-Harvesting Applications,” Int J Antennas Propag, vol. 2021, pp. 1–8, Dec. 2021, https://doi.org/10.1155/2021/1109850

H. P. Partal, A. T. Ince, M. A. Belen, S. Zorlu-Partal, and R. Tanski, “Electromagnetic modeling and analysis of rectifier antennas,” in 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA), Sep. 2015, pp. 1489–1492. https://doi.org/10.1109/ICEAA.2015.7297370

D.-K. Ho, I. Kharrat, V.-D. Ngo, T.-P. Vuong, Q.-C. Nguyen, and M.-T. Le, “Dual-band rectenna for ambient RF energy harvesting at GSM 900 MHz and 1800 MHz,” in 2016 IEEE International Conference on Sustainable Energy Technologies (ICSET), Nov. 2016, pp. 306–310. https://doi.org/10.1109/ICSET.2016.7811800

S. Shrestha, S. R. Lee, and D.-Y. Choi, “A New Fractal-Based Miniaturized Dual Band Patch Antenna for RF Energy Harvesting,” Int J Antennas Propag, vol. 2014, pp. 1–9, Jan. 2014, https://doi.org/10.1155/2014/805052

A. D. Boursianis et al., “Triple-Band Single-Layer Rectenna for Outdoor RF Energy Harvesting Applications,” Sensors, vol. 21, no. 10, p. 3460, May 2021, https://doi.org/10.3390/s21103460

S. Roy, J. J. Tiang, M. B. Roslee, M. T. Ahmed, A. Z. Kouzani, and M. A. P. Mahmud, “Quad-Band Rectenna for Ambient Radio Frequency (RF) Energy Harvesting,” Sensors, vol. 21, no. 23, p. 7838, Nov. 2021, https://doi.org/10.3390/s21237838

N. Singh, B. K. Kanaujia, M. T. Beg, Mainuddin, T. Khan, and S. Kumar, “A dual polarized multiband rectenna for RF energy harvesting,” AEU - International Journal of Electronics and Communications, vol. 93, pp. 123–131, Sep. 2018, https://doi.org/10.1016/j.aeue.2018.06.020

J. M. Barcak and H. P. Partal, “Efficient RF energy harvesting by using multiband microstrip antenna arrays with multistage rectifiers,” in 2012 IEEE Subthreshold Microelectronics Conference (SubVT), Oct. 2012, pp. 1–3. https://doi.org/10.1109/SubVT.2012.6404327

D. Pozar, “A reciprocity method of analysis for printed slot and slot-coupled microstrip antennas,” in IEEE Trans Antennas Propag, vol. 34, no. 12, pp. 1439–1446, Dec. 1986, https://doi.org/10.1109/TAP.1986.1143785

S. I. Latif, L. Shafai, and S. K. Sharma, “Bandwidth enhancement and size reduction of microstrip slot antennas,” in IEEE Trans Antennas Propag, vol. 53, no. 3, pp. 994–1003, Mar. 2005, https://doi.org/10.1109/TAP.2004.842674

C. Song, P. Lu, and S. Shen, “Highly Efficient Omnidirectional Integrated Multiband Wireless Energy Harvesters for Compact Sensor Nodes of Internet-of-Things,” in IEEE Transactions on Industrial Electronics, vol. 68, no. 9, pp. 8128–8140, Sep. 2021, https://doi.org/10.1109/TIE.2020.3009586

D. Surender et al., “Semi-Annular-Ring slots loading for broadband circularly polarized DR-Rectenna for RF energy harvesting in smart city environment,” AEU - International Journal of Electronics and Communications, vol. 147, p. 154143, Apr. 2022, https://doi.org/10.1016/j.aeue.2022.154143

A. Yadav, D. Sethi, and R. K. Khanna, “Slot loaded UWB antenna: Dual band notched characteristics,” AEU - International Journal of Electronics and Communications, vol. 70, no. 3, pp. 331–335, Mar. 2016, https://doi.org/10.1016/j.aeue.2015.12.014

Z. W. Sim, R. Shuttleworth, M. J. Alexander, and B. D. Grieve, “Compact Patch Antenna Design for Outdoor RF Energy Harvesting in Wireless Sensor Networks,” Progress In Electromagnetics Research, vol. 105, pp. 273–294, Jun. 2010, https://doi.org/10.2528/PIER10052509

M. Afrough, M. M. Fakharian, and F. Tavakol-Hamedani, “Compact Dual-Band Suspended Microstrip Slot Antenna with an Antipodal Parasitic Element for WLAN Applications,” Wirel Pers Commun, vol. 83, no. 1, pp. 571–579, Jul. 2015, https://doi.org/10.1007/s11277-015-2409-z

A. R. Harish and R. K. Joshi, “Studies on application of fractal based geometries in printed antenna structures,” in 2007 IEEE Applied Electromagnetics Conference (AEMC), Dec. 2007, pp. 1–4. https://doi.org/10.1109/AEMC.2007.4638065

F.-J. Huang, T.-C. Yo, C.-M. Lee, and C.-H. Luo, “Design of Circular Polarization Antenna With Harmonic Suppression for Rectenna Application,” in IEEE Antennas Wirel Propag Lett, vol. 11, pp. 592–595, May. 2012, https://doi.org/10.1109/LAWP.2012.2201437

S. Vázquez-Valdés et al., “A Novel CMOS reconfigurable rectifier for wearable piezoelectric energy harvesters,” Revista UIS Ingenierías, vol. 21, no. 1, pp. 103–112, Nov. 2021, https://doi.org/10.18273/revuin.v21n1-2022009

I. D. Bougas, M. S. Papadopoulou, K. Psannis, P. Sarigiannidis, and S. K. Goudos, “State-of-the-Art Technologies in RF Energy Harvesting Circuits – A Review,” in 2020 3rd World Symposium on Communication Engineering (WSCE), Oct. 2020, pp. 18–22. https://doi.org/10.1109/WSCE51339.2020.9275507

A. Okba, A. Takacs, H. Aubert, S. Charlot, and P.-F. Calmon, “Multiband rectenna for microwave applications,” C R Phys, vol. 18, no. 2, pp. 107–117, Feb. 2017, https://doi.org/10.1016/j.crhy.2016.12.002

N. Singh et al., “Low profile multiband rectenna for efficient energy harvesting at microwave frequencies,” International Journal of Electronics, vol. 106, no. 12, pp. 2057–2071, Dec. 2019, https://doi.org/10.1080/00207217.2019.1636302

A. Panigrahi, D. Paul, S. Gupta, S. Chourasia, and T. Nath, “A comparative study of integrated RF to DC power conversion system for RF energy harvesting,” Mater Today Proc, Jun. 2021, https://doi.org/10.1016/j.matpr.2021.05.633

J.-J. Lu, X.-X. Yang, H. Mei, and C. Tan, “A Four-Band Rectifier With Adaptive Power for Electromagnetic Energy Harvesting,” in IEEE Microwave and Wireless Components Letters, vol. 26, no. 10, pp. 819–821, Oct. 2016, https://doi.org/10.1109/LMWC.2016.2601294

L. Yang, Y. J. Zhou, C. Zhang, X. M. Yang, X.-X. Yang, and C. Tan, “Compact Multiband Wireless Energy Harvesting Based Battery-Free Body Area Networks Sensor for Mobile Healthcare,” in IEEE J Electromagn RF Microw Med Biol, vol. 2, no. 2, pp. 109–115, Jun. 2018, https://doi.org/10.1109/JERM.2018.2817364

O. Georgiou, K. Mimis, D. Halls, W. H. Thompson, and D. Gibbins, “How Many Wi-Fi APs Does it Take to Light a Lightbulb?,” in IEEE Access, vol. 4, pp. 3732–3746, May 2016, https://doi.org/10.1109/ACCESS.2016.2573681

T. Almoneef and O. M. Ramahi, “Split-Ring Resonator Arrays for Electromagnetic Energy Harvesting,” Progress In Electromagnetics Research B, vol. 62, no. 1, pp. 167–180, Mar. 2015, https://doi.org/10.2528/PIERB15012506

A. Benayad and M. Tellache, “A compact energy harvesting multiband rectenna based on metamaterial complementary split ring resonator antenna and modified hybrid junction ring rectifier,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 30, no. 2, p. e22031, Feb. 2020, https://doi.org/10.1002/mmce.22031

Cómo citar
[1]
E. A. Zapata Ochoa, F. López Giraldo, y G. D. Góez, «Rectenna de doble banda para la captación de energía inalámbrica en las bandas de 2.40 GHz y 5.38 GHz», TecnoL., vol. 25, n.º 55, p. e2384, oct. 2022.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2022-10-10
Sección
Artículos de investigación

Métricas