Simulación numérica de una columna de agua oscilante para las condiciones de ola del océano Pacífico colombiano

Palabras clave: Columna de agua oscilante, convertidor de energía de las olas, energía de las olas, energía oceánica, modelado computacional

Resumen

La energía de las olas es una de las fuentes menos explotadas en Colombia. La columna de agua oscilante (OWC, por siglas en inglés) puede ser una tecnología sostenible para generar electricidad en zonas de difícil acceso utilizando la energía disponible en el océano Pacífico. En la actualidad, Colombia carece del desarrollo de estos dispositivos; sin embargo, hay esperanzas centradas en la energía de las olas como alternativa factible para proporcionar energía renovable en las zonas no interconectadas (ZNI) del país. En este trabajo, se pretende simular numéricamente una OWC para las condiciones del océano Pacifico colombiano, por lo que se empleó la dinámica de fluidos computacional a través del programa ANSYS Fluent para modelar una OWC ubicada en la orilla. Esta investigación alcanza la etapa de simulación numérica; sin embargo, puede ser llevada a estudios experimentales a pequeña escala. La eficiencia máxima de la cámara resonante simulada y la velocidad media de la superficie libre de la columna de agua para la geometría estudiada fueron 66.81 % y 0.118 m/s, respectivamente. El análisis de sensibilidad de los factores geométricos que describen la cámara resonante del dispositivo frente a diversas condiciones de mar podría ser de crucial interés para mejorar su eficiencia hidrodinámica.

Biografía del autor/a

Juan Parra-Quintero, Universidad de Antioquia, Colombia

Universidad de Antioquia, Medellín-Colombia, juan.parraq@udea.edu.co

Ainhoa Rubio-Clemente, Universidad de Antioquia, Colombia

Universidad de Antioquia, Medellín-Colombia, ainhoa.rubioc@udea.edu.co

Edwin Chica*, Universidad de Antioquia, Colombia

Universidad de Antioquia, Medellín-Colombia, edwin.chica@udea.edu.co

Referencias bibliográficas

O. Pupo-Roncallo, J. Campillo, D. Ingham, K. Hughes, and M. Pourkashanian, “Renewable energy production and demand dataset for the energy system of Colombia,” Data Br., vol. 28, p. 105084, Feb. 2020. https://doi.org/10.1016/j.dib.2019.105084

A. Perez and J. J. Garcia-Rendon, “Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia,” Renew. Energy, vol. 167, pp. 146–161, Apr. 2021. https://doi.org/10.1016/j.renene.2020.11.067

A. M. Rosso-Cerón and V. Kafarov, “Barriers to social acceptance of renewable energy systems in Colombia”, Current Opinion in Chemical Engineering, vol. 10, pp. 103-110, Nov. 2015. https://doi.org/10.1016/j.coche.2015.08.003

S. A. Gil Ruiz, J. E. Cañón Barriga, and J. A. Martínez, “Wind power assessment in the Caribbean region of Colombia, using ten-minute wind observations and ERA5 data,” Renew. Energy, vol. 172, pp. 158–176, Jul. 2021. https://doi.org/10.1016/j.renene.2021.03.033

J. G. Rueda-Bayona, A. Guzmán, J. J. Cabello Eras, R. Silva-Casarín, E. Bastidas-Arteaga, and J. Horrillo-Caraballo, “Renewables energies in Colombia and the opportunity for the offshore wind technology,” J. Clean. Prod., vol. 220, pp. 529–543, May. 2019. https://doi.org/10.1016/j.jclepro.2019.02.174

Unidad de Planeación Minero-Energética, “Plan Energético Nacional 2020-2050”. Colombia, Feb. 2020. https://www1.upme.gov.co/DemandaEnergetica/UPME_Presentacion_PEN_V48.pdf

D. Clemente, P. Rosa-Santos, and F. Taveira-Pinto, “On the potential synergies and applications of wave energy converters: A review,” Renew. Sustain. Energy Rev., vol. 135, p. 110162, Jan. 2021. https://doi.org/10.1016/j.rser.2020.110162

Ministerio de Minas y Energía, “La transición energética de colombia. Memorias al Congreso,” Colombia, Jun. 2020. https://www.minenergia.gov.co/documents/5744/Memorias_al_Congreso_2019-2020.pdf

S. S. Prakash, et al., “Wave Energy Converter: A Review of Wave Energy Conversion Technology,” 3rd Asia-Pacific World Congress on Computer Science and Engineering, Nadi, Fiji, 2016, pp. 71-77. https://doi.org/10.1109/APWC-on-CSE.2016.023

J. D. Restrepo and S. A. López, “Morphodynamics of the Pacific and Caribbean deltas of Colombia, South America,” J. South Am. Earth Sci., vol. 25, no. 1, pp. 1–21, Feb. 2008. https://doi.org/10.1016/j.jsames.2007.09.002

J. Portilla, A. L. Caicedo, R. Padilla-Hernández, and L. Cavaleri, “Spectral wave conditions in the Colombian Pacific Ocean,” Ocean Model., vol. 92, pp. 149–168, Aug. 2015. https://doi.org/10.1016/j.ocemod.2015.06.005

N. Borduas and N. M. Donahue, “The Natural Atmosphere,” Green Chemistry, pp. 131-150, 2018. https://doi.org/10.1016/B978-0-12-809270-5.00006-6

K. O. Yoro and M. O. Daramola, “CO2 emission sources, greenhouse gases, and the global warming effect,” Advances in Carbon Capture, pp. 3-28, 2020. https://doi.org/10.1016/B978-0-12-819657-1.00001-3

I. Simonetti, L. Cappietti, H. Elsafti, and H. Oumeraci, “Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study,” Energy, vol. 139, pp. 1197-1209, Nov. 2017. https://doi.org/10.1016/j.energy.2017.08.033

J. Lekube, A. J. Garrido, I. Garrido, E. Otaola, and J. Maseda, “Flow Control in Wells Turbines for Harnessing Maximum Wave Power,” Sensors, vol. 18, no. 2, p. 535, Feb. 2018. https://doi.org/10.3390/s18020535

R. Ahamed, K. McKee, and I. Howard, “Advancements of wave energy converters based on power take off (PTO) systems: A review,” Ocean Eng., vol. 204, p. 107248, Mar. 2020. https://doi.org/10.1016/j.oceaneng.2020.107248

Y. M. Choi et al., “An efficient methodology for the simulation of nonlinear irregular waves in computational fluid dynamics solvers based on the high order spectral method with an application with OpenFOAM,” Int. J. Nav. Archit. Ocean Eng., vol. 15, p. 100510, 2023. https://doi.org/10.1016/J.IJNAOE.2022.100510

L. Carlo, C. Iuppa, and C. Faraci, “A numerical-experimental study on the hydrodynamic performance of a U-OWC wave energy converter,” Renew. Energy, vol. 203, pp. 89–101, Feb. 2023. https://doi.org/10.1016/J.RENENE.2022.12.057

L. Gurnari, P. G. F.Filianoti, and S. M.Camporeale, “Fluid dynamics inside a U-shaped oscillating water column (OWC): 1D vs. 2D CFD model,” Renew. Energy, vol. 193, pp. 687–705, Jun. 2022. https://doi.org/10.1016/J.RENENE.2022.05.025

J.-M. Zhan, Q. Fan, W.-Q. Hu, and Y.-J. Gong, “Hybrid realizable k-ε/laminar method in the application of 3D heaving OWCs,” Renew. Energy, vol. 155, pp. 691–702, Aug, 2020. https://doi.org/10.1016/j.renene.2020.03.140

M. Kharati-koopaee and A. Fathi-kelestani, “Assessment of oscillating water column performance : Influence of wave steepness at various chamber lengths and bottom slopes,” Renew. Energy, vol. 147, Part. 1, pp. 1595–1608, Mar. 2020. https://doi.org/10.1016/j.renene.2019.09.110

C. Wang and Y. Zhang, “Hydrodynamic performance of an offshore Oscillating Water Columndeviced mounted over an immersed horizontal plate : A numerical study,” Energy, vol. 222, p. 119964, May. 2021. https://doi.org/10.1016/j.energy.2021.119964

A. T. Haghighi, A. H. Nikseresht, and M. Hayati, “Numerical analysis of hydrodynamic performance of a dual-chamber Oscillating Water Column,” Energy, vol. 221, p. 119892, Apr. 2021. https://doi.org/10.1016/j.energy.2021.119892

Y. Cui, Z. Liu, X. Zhang, and C. Xu, “Review of CFD studies on axial-flow self-rectifying turbines for OWC wave energy conversion,” Ocean Eng., vol. 175, pp. 80–102, Mar. 2019. https://doi.org/10.1016/j.oceaneng.2019.01.040

P. G. F. Filianoti, L. Gurnari, M. Torresi, S. M. Camporeale, “CFD analysis the conversion process in a fixed oscillating The of water column ( OWC ) device with a Wells turbine,” Energy Procedia, vol. 148, pp. 1026–1033, Aug. 2018. https://doi.org/10.1016/j.egypro.2018.08.058

S. Dai, S. Day, Z. Yuan, and H. Wang, “Investigation on the hydrodynamic scaling effect of an OWC type wave energy device using experiment and CFD simulation,” Renew. Energy, vol. 142, pp. 184–194, Nov. 2019. https://doi.org/10.1016/j.renene.2019.04.066

M. H. Dao, L. W. Chew, and Y. Zhang, “Modelling physical wave tank with flap paddle and porous beach in OpenFOAM,” Ocean Eng., vol. 154, pp. 204–215, Apr. 2018. https://doi.org/10.1016/j.oceaneng.2018.02.024

Z. Huang and S. Huang, “Two-phase flow simulations of fixed 3D oscillating water columns using OpenFOAM : A comparison of two methods for modeling quadratic power takeoff,” Ocean Eng., vol. 232, p. 108600, Jul. 2021. https://doi.org/10.1016/j.oceaneng.2021.108600

Z. Deng, C. Wang, P. Wang, P. Higuera, and R. Wang, “Hydrodynamic performance of an offshore-stationary OWC device with a horizontal bottom plate: Experimental and numerical study,” Energy, vol. 187, p. 115941, Nov, 2019. https://doi.org/10.1016/j.energy.2019.115941

L. A. Gaspar, P. R. F. Teixeira, and E. Didier, “Numerical analysis of the performance of two onshore oscillating water column wave energy converters at different chamber wall slopes,” Ocean Eng., vol. 201, p. 107119, Apr. 2020. https://doi.org/10.1016/j.oceaneng.2020.107119

M. Hayati, A. H. Nikseresht, and A. T. Haghighi, “Sequential optimization of the geometrical parameters of an OWC device based on the specific wave characteristics,” Renew. Energy, vol. 161, pp. 386–394, Dec. 2020. https://doi.org/10.1016/j.renene.2020.07.073

M. Shahabi-Nejad and A. H. Nikseresht, “A comprehensive investigation of a hybrid wave energy converter including oscillating water column and horizontal floating cylinder,” Energy, vol. 243, p. 122763, Mar. 2022. https://doi.org/10.1016/j.energy.2021.122763

Y. T. B. de Lima, M. das Gomes, L. A. Isoldi, E. D. dos Santos, G. Lorenzini, and L. A O. Rocha, “Geometric Analysis through the Constructal Design of a Sea Wave Energy Converter with Several Coupled Hydropneumatic Chambers Considering the Oscillating Water Column Operating Principle,” Appl. Sci., vol. 11, no. 18, p. 8630, Sep. 2021. https://doi.org/10.3390/app11188630

A. Rubio-Clemente, L. Velásquez, and E. Chica, “Design of a water channel to model the wave conditions in the Colombian Pacific Ocean,” Renewable Energy and Power Quality Journal, vol. 20, pp. 405-412, Sep. 2022. https://doi.org/10.24084/repqj20.325

Dimar, Oceanographic Compilation of the Colombian Pacific Basin II, Colombia, Editorial Dimar, Serie Publicaciones Especiales CCCP. https://cecoldodigital.dimar.mil.co/2687/2/396_DIMAR_en.pdf

S. Foteinis, “Wave energy converters in low energy seas : Current state and opportunities,” Renew. Sustain. Energy Rev., vol. 162, p. 112448, Jul. 2022. https://doi.org/10.1016/j.rser.2022.112448

A. A. Medina Rodríguez et al., “Experimental Investigation of the Hydrodynamic Performance of Land-Fixed Nearshore and Onshore OWC with a Thick Front Wall,” Energies, vol.15, no. 7, p. 2364, Jan. 2022. https://doi.org/10.3390/en15072364

C.-P. Tsai, C.H. Ko, and Y.-C. Chen, “Investigation on Performance of a Modified Breakwater-Integrated OWC Wave Energy Converter,” Sustainability, vol. 10, no. 3, p. 643, Feb. 2018. https://doi.org/10.3390/su10030643

C. Xu and Z. Huang, “A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study,” Appl. Energy, vol. 229, pp. 963–976, Nov. 2018. https://doi.org/10.1016/j.apenergy.2018.08.005

B. Guo and J. V. Ringwood, “Geometric optimisation of wave energy conversion devices: A survey,” Appl. Energy, vol. 297, p. 117100, Sep. 2021. https://doi.org/10.1016/j.apenergy.2021.117100

I. López, B. Pereiras, F. Castro, and G. Iglesias, “Performance of OWC wave energy converters : influence of turbine damping and tidal variability,” Energy Research, vol. 39, no. 4, pp. 472–483, Aug. 2014. https://doi.org/10.1002/er.3239

A. Elhanafi, G. Macfarlane, A. Fleming, and Z. Leong, “Experimental and numerical investigations on the intact and damage survivability of a floating-moored oscillating water column device,” Appl. Ocean Res., vol. 68, pp. 276–292, Oct. 2017. https://doi.org/10.1016/j.apor.2017.09.007

M. Letzow et al., “Numerical analysis of the influence of geometry on a large scale onshore oscillating water column device with associated seabed ramp,” Int. J. Des. Nat. Ecodynamics, vol. 15, no. 6, pp. 873–884, Dec. 2020. https://doi.org/10.18280/ijdne.150613

A. Elhanafi, G. Macfarlane, A. Fleming, and Z. Leong, “Scaling and air compressibility effects on a three-dimensional offshore stationary OWC wave energy converter,” Appl. Energy, vol. 189, pp. 1–20, Mar. 2017. https://doi.org/10.1016/j.apenergy.2016.11.095

M. M. Samak, H. Elgamal, and A. M. N. Elmekawy, “The contribution of L-shaped front wall in the improvement of the oscillating water column wave energy converter performance,” Energy, vol. 226, p. 120421, Jul. 2021. https://doi.org/10.1016/j.energy.2021.120421

C. Wang and Y. Zhang, “Hydrodynamic performance of an offshore Oscillating Water Column device mounted over an immersed horizontal plate: A numerical study,” Energy, vol. 222, p. 119964, May. 2021. https://doi.org/10.1016/j.energy.2021.119964

M. das N. Gomes, G. Lorenzini, L. A. O. Rocha, E. D. dos Santos, and L. A. Isoldi, “Constructal Design Applied to the Geometric Evaluation of an Oscillating Water Column Wave Energy Converter Considering Different Real Scale Wave Periods,” J. Eng. Thermophys., vol. 27, pp. 173–190, Apr. 2018. https://doi.org/10.1134/S1810232818020042

Y. T. B. de Lima, M. das N. Gomes, L. A. Isoldi, E. D. dos Santos, G. Lorenzini, and L. A. O. Rocha, “Geometric analysis through the constructal design of a sea wave energy converter with several coupled hydropneumatic chambers considering the oscillating water column operating principle,” Appl. Sci., vol. 11, no. 18, p. 8630, Sep. 2021. https://doi.org/10.3390/app11188630

M. M. Han and C. M. Wang, “Potential flow theory-based analytical and numerical modelling of porous and perforated breakwaters : A review,” Ocean Eng., vol. 249, p. 110897, Apr. 2022. https://doi.org/10.1016/j.oceaneng.2022.110897

M. Rashed Mia, M. Zhao, H. Wu, and A. Munir, “Numerical investigation of offshore oscillating water column devices,” Renew. Energy, vol. 191, pp. 380–393, May. 2022. https://doi.org/10.1016/j.renene.2022.04.069

P. Mohapatra and T. Sahoo, “Hydrodynamic performance analysis of a shore fixed oscillating water column wave energy converter in the presence of bottom variations,” Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 234, no. 1, pp. 37-47, Feb. 2020. https://doi.org/10.1177/1475090219864833

A. H. S. Weerakoon, B.-H. Kim, Y.-J. Cho, D. D. Prasad, M. Rafiuddin Ahmed, and Y.-H. Lee, “Design optimization of a novel vertical augmentation channel housing a cross-flow turbine and performance evaluation as a wave energy converter,” Renew. Energy, vol. 180, pp. 1300–1314, Dec. 2021. https://doi.org/10.1016/j.renene.2021.08.092

W. C. Chen, Y. L. Zhang, J. Yang, H. F. Yu, and S. D. Liang, “Experiments and CFD modeling of a dual-raft wave energy dissipator,” Ocean Eng., vol. 237, p. 109648, Oct. 2021. https://doi.org/10.1016/j.oceaneng.2021.109648

Z. Liu, C. Xu, and K. Kim, “A CFD-based wave-to-wire model for the oscillating water column wave energy Convertor,” Ocean Eng., vol. 248, p. 110842, Mar. 2022. https://doi.org/10.1016/j.oceaneng.2022.110842

M. Shalby, A. Elhanafi, P. Walker, and D. G. Dorrell, “CFD modelling of a small–scale fixed multi–chamber OWC device,” Appl. Ocean Res., vol. 88, pp. 37–47, Jul. 2019. https://doi.org/10.1016/j.apor.2019.04.003

A. Çelik and A. Altunkaynak, “Experimental investigations on the performance of a fixed-oscillating water column type wave energy converter,” Energy, vol. 188, p. 116071, Dec. 2019. https://doi.org/10.1016/j.energy.2019.116071

T. Vyzikas, S. Deshoulières, O. Giroux, M. Barton, and D. Greaves, “Numerical study of fixed Oscillating Water Column with RANS-type two-phase CFD model,” Renew. Energy, vol.102, Part. B, pp. 294-305, Mar. 2017. https://doi.org/10.1016/j.renene.2016.10.044

T. Vyzikas, S. Deshoulières, M. Barton, O. Giroux, D. Greaves, and D. Simmonds, “Experimental investigation of different geometries of fixed OWC devices,” Renew. Energy, vol. 104, pp. 248–258, Apr. 2017. https://doi.org/10.1016/j.renene.2016.11.061

R. G. Dean and R. A. Dalrymple, Water wave mechanics for engineers and scientists, Advanced Series on Ocean Engineering: Volume 2, world scientific publishing company, 1991. https://doi.org/10.1142/1232

K. Rezanejad, C. Guedes Soares, I. López, and R. Carballo, “Experimental and numerical investigation of the hydrodynamic performance of an oscillating water column wave energy converter,” Renew. Energy, vol. 106, pp. 1–16, Jun. 2017. https://doi.org/10.1016/j.renene.2017.01.003

C. Xu, Z. Liu, and G. Tang, “Experimental study of the hydrodynamic performance of a U-oscillating water column wave energy converter,” Ocean Eng., vol. 265, p. 112598, Dec. 2022. https://doi.org/10.1016/j.oceaneng.2022.112598

L. Gurnari, P. G. F. Filianoti, and S. M. Camporeale, “Fluid dynamics inside a U-shaped oscillating water column ( OWC ): 1D vs. 2D CFD model,” Renew. Energy, vol. 193, pp. 687–705, Jun. 2022. https://doi.org/10.1016/j.renene.2022.05.025

D.-zhi Ning, B.-ming Guo, R.-quan Wang, T. Vyzikas, and D. Greaves, “Geometrical investigation of a U-shaped oscillating water column wave energy device,” Appl. Ocean Res., vol. 97, p. 102105, Apr. 2020. https://doi.org/10.1016/j.apor.2020.102105

I. López, B. Pereiras, F. Castro, and G. Iglesias, “Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model,” Appl. Energy, vol. 127, pp. 105–114, Aug. 2014. https://doi.org/10.1016/j.apenergy.2014.04.020

A. Elhanafi, A. Fleming, G. Macfarlane, and Z. Leong, “Numerical hydrodynamic analysis of an offshore stationary–floating oscillating water column e wave energy converter using CFD,” Int. J. Nav. Archit. Ocean Eng., vol. 9, no. 1, pp. 77-99, Jan. 2017. https://doi.org/10.1016/j.ijnaoe.2016.08.002

S. Saincher and J. Banerjee, “Influence of wave breaking on the hydrodynamics of wave energy converters: A review,” Renew. Sustain. Energy Rev., vol. 58, pp. 704–717, May. 2016. https://doi.org/10.1016/j.rser.2015.12.301

Cómo citar
[1]
J. Parra-Quintero, A. Rubio-Clemente, y E. Chica, «Simulación numérica de una columna de agua oscilante para las condiciones de ola del océano Pacífico colombiano», TecnoL., vol. 26, n.º 57, p. e2630, jul. 2023.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2023-07-27
Sección
Artículos de investigación
Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas