Optimización de costos en un escenario de mercado entre pares multimicrorred con dinámicas de replicadores

Palabras clave: Dinámicas de replicadores, recursos energéticos distribuidos, mercados de energía, peer to peer, relajación lagrangiana, sistemas de energía eléctrica

Resumen

La optimización desempeña un papel crucial en la planificación y operación de los sistemas de gestión de energía, reduciendo costos y evitando pérdidas en su generación, disminuyendo, además, las emisiones de carbono. Lo anterior se da teniendo en cuenta el equilibrio entre oferta y demanda y el aprovechamiento de los recursos energéticos distribuidos (DER, por sus siglas en inglés). Este trabajo tuvo como objetivo proponer un esquema generalizado de comunidad energética, donde los generadores que componen una microrred suplen la demanda de esta o de las microrredes vecinas. Es de considerar que cada generador de energía tiene una función de costos asociada a esta, y existe una penalización, o costo de transmisión, cuando un DER, ubicado en una microrred definida, envía energía a la microrred vecina. Con el fin de abordar las restricciones, se propuso, como metodología de solución, un enfoque basado en juegos poblacionales, en conjunto con la técnica de relajación lagrangiana. Los resultados obtenidos fueron la aplicación del modelo y método de solución en tres diferentes escenarios. Además, se comparó el desempeño de la solución propuesta con la respuesta de un método de optimización convencional, logrando despachos similares y errores mínimos en comparación con la técnica tradicional. La investigación demostró que la combinación de conceptos de juegos poblacionales y técnicas de relajación lagrangiana permiten asumir restricciones que son de difícil manejo para la dinámica de replicadores. Finalmente, se concluye que el modelo es una buena herramienta para abordar problemas de gestión de energía que implican cumplir con la demanda por región en un escenario peer to peer.

Biografía del autor/a

Sofia Chacón, Universidad de Nariño, Colombia

Universidad de Nariño, Pasto-Colombia, sgchacon@udenar.edu.co

Edinson Benavides, Universidad de Nariño, Colombia

Universidad de Nariño, Pasto-Colombia, erbenavides@udenar.edu.co

Andrés Pantoja, Universidad de Nariño, Colombia

Universidad de Nariño, Pasto-Colombia, ad_pantoja@udenar.edu.co

Germán Obando, Universidad de Nariño, Colombia

Universidad de Nariño, Pasto-Colombia, gdobando@udenar.edu.co

Referencias bibliográficas

N. Razzaghi-Asl, J. Tanha, M. Nabatian, and N. Samadi, “Smart Grid based decentralized Peer-to-Peer Energy Trading Using Whale Optimization Algorithm,” in 2021 7th International Conference on Signal Processing and Intelligent Systems, Tehran, Iran, Islamic Republic of, 2021, pp. 01-05. https://doi.org/10.1109/ICSPIS54653.2021.9729347

N. Ghorbani-Renani, and P. Odonkor, “An Energy Cost Optimization Model for Electricity Trading in Community Microgrids,” in 2022 IEEE International Smart Cities Conference, Pafos, Cyprus, 2022, pp. 1-7. https://doi.org/10.1109/ISC255366.2022.9922504

G. Vieira, and J. Zhang, “Peer-to-peer energy trading in a microgrid leveraged by smart contracts,” Renewable and Sustainable Energy Reviews, vol. 143, p. 110900, Jun. 2021. https://doi.org/10.1016/j.rser.2021.110900

Y. Xia, Q. Xu, S. Li, R. Tang, and P. Du, “Reviewing the peer-to-peer transactive energy market: Trading environment, optimization methodology, and relevant resources,” J. Cleaner Prod., vol. 383, p. 135441, Jan. 2022. https://doi.org/10.1016/j.jclepro.2022.135441

S. Suthar, S. H. C. Cherukuri, and N. M. Pindoriya, “Peer-to-peer energy trading in smart grid: Frameworks, implementation methodologies, and demonstration projects,” Electric Power Syst. Res., vol. 214, p. 108907, Jan. 2023. https://doi.org/10.1016/j.epsr.2022.108907

T. Capper et al., “Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models,” Renewable Sustain. Energy Rev., vol. 162, p. 112403, Jul. 2022. https://doi.org/10.1016/j.rser.2022.112403

A. L. Bukar et al., “Peer-to-peer electricity trading: A systematic review on current developments and perspectives,” Renew. Energy Focus., vol. 44, pp. 317–333, 2023. https://doi.org/10.1016/j.ref.2023.01.008

A. Timilsina, and S. Silvestri, “Prospect Theory-inspired Automated P2P Energy Trading with Q-learning-based Dynamic Pricing,” in 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022, pp. 4836-4841. https://doi.org/10.1109/GLOBECOM48099.2022.10001173

M. Vieira, R. Faia, T. Pinto, and Z. Vale, “Schedule Peer-to-Peer Transactions of an Energy Community Using Particle Swarm,” in 2022 18th International Conference on the European Energy Market, Ljubljana, Slovenia, 2022, pp. 1-6. https://doi.org/10.1109/EEM54602.2022.9921094

S. Cui, W. Yan-Wu, and X. Jiang-Wen, “Peer-to-peer energy sharing among smart energy buildings by distributed transaction,” IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 6491–6501, Nov. 2019. https://doi.org/10.1109/TSG.2019.2906059

Y. Sharifian, and H. Abdi, “Multi-area economic dispatch problem: Methods, uncertainties, and future directions,” Renewable Sustain. Energy Rev., vol. 191, p. 114093, Mar. 2024. https://doi.org/10.1016/j.rser.2023.114093

A. B. Kunya, A. S. Abubakar, and S. S. Yusuf, “Review of economic dispatch in multi-area power system: State-of-the-art and future prospective,” Electric Power Syst. Res., vol. 217, p. 109089, Apr. 2023. https://doi.org/10.1016/j.epsr.2022.109089

S. Xuanyue et al., “Peer-to-peer multi-energy distributed trading for interconnected microgrids: A general Nash bargaining approach,” Int. J. Electr. Power Energy Syst., vol. 138, p. 107892, Jun. 2022. https://doi.org/10.1016/j.ijepes.2021.107892

T. Alskaif, J. L. Crespo-Vazquez, M. Sekuloski, G. V. Leeuwen, and J. P. Catalao, “Blockchain-based fully peer-to-peer energy trading strategies for residential energy systems,” IEEE Transactions on Industrial Informatics, vol. 18, no. 1, pp. 231–241, Jan. 2022. https://doi.org/10.1109/TII.2021.3077008

K. Anoh, S. Maharjan, A. Ikpehai, Y. Zhang, and B. Adebisi, “Energy peer-to-peer trading in virtual microgrids in smart grids: A game- theoretic approach,” IEEE Transactions on Smart Grid, vol. 11, no 2, pp.1264–1275, Mar. 2020. https://doi.org/10.1109/TSG.2019.2934830

Y. Cui, Y. Xu, Y. Wang, Y. Zhao, H. Zhu, and D. Cheng, “Peer-to-peer energy trading with energy trading consistency in interconnected multi-energy microgrids: A multi-agent deep reinforcement learning approach,” Int. J. Elect. Power & Energy Syst., vol. 156, p. 109753, Feb. 2024. https://doi.org/10.1016/j.ijepes.2023.109753

I. Quintas-Pereira, “Implementación del algoritmo del replicador dinámico en lenguaje R,” Política y Cultura, no. 39, pp. 251–261, Jun. 2013. https://www.redalyc.org/articulo.oa?id=26727013013

J. Rychtář, and M. Broom, Game-Theoretical Models in Biology, 2nd ed. New York, NY, USA: Chapman and Hall/CRC, 2022. https://doi.org/10.1201/9781003024682

E. Baron-Prada, and E. Mojica-Nava, “A population games transactive control for distributed energy resources,” Int. J. Elect. Power & Energy Syst., vol. 130, p. 106874, Sep. 2021. https://doi.org/10.1016/j.ijepes.2021.106874

B. Xin, and M. Zhang, “Evolutionary game on international energy trade under the russia-ukraine conflict,” Energy Economics, vol. 125, p. 106827, 2023. https://doi.org/10.1016/j.eneco.2023.106827

A. Paudel, K. Chaudhari, C. Long, and H. B. Gooi, “Peer-to-peer energy trading in a prosumer-based community microgrid: A game-theoretic model,” IEEE Transactions on Industrial Electronics, vol. 66, no. 8, pp. 6087–6097, Aug. 2019. https://doi.org/10.1109/TIE.2018.2874578

L. Won-Poong, D. Han, and D. Won, “Grid-oriented coordination strategy of prosumers using game-theoretic peer-to-peer trading framework in energy community,” Applied Energy, vol. 326, p. 119980, Nov. 2022. https://doi.org/10.1016/j.apenergy.2022.119980

M. Tofighi-Milani, S. Fattaheian-Dehkordi, M. Gholami, M. Fotuhi-Firuzabad, and M. Lehtonen, “A novel distributed paradigm for energy scheduling of islanded multiagent microgrids,” IEEE Access, vol. 10, pp. 83636–83649, Aug. 2022. https://doi.org/10.1109/ACCESS.2022.3197160

J. Martinez-Piazuelo, W. Ananduta, C. Ocampo-Martinez, S. Grammatico, and N. Quijano, “Population Games With Replicator Dynamics Under Event-Triggered Payoff Provider and a Demand Response Application,” IEEE Control Systems Letters, vol. 7, pp. 3417-3422, Jun. 2023. https://doi.org/10.1109/LCSYS.2023.3285532

A. Pantoja, G. Obando, and N. Quijano, “Distributed optimization with information-constrained population dynamics,” Journal of the Franklin Institute, vol. 356, no 1, pp. 209–236, Jan. 2019. https://doi.org/10.1016/j.jfranklin.2018.10.016

S. Chacon, E. Benavides, A. Pantoja, and G. Obando, “Optimización de Costos en Transacciones de Energía Multi-Región Mediante Replicadores Dinámicos con Restricciones,” in 1º Congreso de Electrónica e Informática Aplicada “CEIA”, Pasto, Colombia, 2023. [Unpublished]

J. Zhu, "Classic Economic Dispatch" In Optimization of Power System Operation, Hoboken, Ed., NJ, USA: Wiley, 2015, pp. 91-143. https://doi.org/10.1002/9781118887004

A. Aguilar, and J. Díaz. “Una visión del mercado eléctrico colombiano,” Bogotá, Colombia: Unidad de Planeación Minero-Energética (UPME), 2004. http://www.upme.gov.co/Docs/Vision_Mercado_Electrico_Colombiano.pdf

RESOLUCIÓN 174 DE 2021, 174, Comisión de Regulación de Energía y Gas, Colombia, 2021. [Online]. Available: https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_creg_0174_2021.htm#6

R. H. Byrd, J. C. Gilbert, and J. Nocedal, “A trust region method based on interior point techniques for nonlinear programming,” Math. Program., vol. 89, no. 1, pp. 149–185, Nov. 2000. https://doi.org/10.1007/PL00011391

Cómo citar
[1]
S. Chacón, E. Benavides, A. Pantoja, y G. Obando, «Optimización de costos en un escenario de mercado entre pares multimicrorred con dinámicas de replicadores», TecnoL., vol. 27, n.º 60, p. e2992, jul. 2024.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2024-07-02
Sección
Artículos de investigación

Métricas

Crossref Cited-by logo