Modelado, diseño y control de un sistema de generación eólica basado en MPPT con convertidor electrónico de potencia para la integración de una turbina a una microrred

Palabras clave: control lineal, control no lineal, convertidores de potencia CC-CC, microrredes, recursos energéticos distribuidos

Resumen

La generación de energía a partir de fuentes renovables, en particular la energía eólica, ha emergido como una alternativa crucial y sostenible para satisfacer las demandas de energía actual y futura. Esta investigación tuvo como objetivo realizar el modelado, diseño y control de un sistema electrónico que permitiera la conexión de una turbina a un barraje de corriente continua en una microrred domiciliaria bajo un contexto de eficiencia energética, considerando la variabilidad del viento. La metodología empleada consistió en establecer las características mecánicas y eléctricas del Sistema de Generación Eólica para determinar las expresiones necesarias en el modelado y diseño del convertidor SEPIC (Single-Ended Primary Inductor Converter, por sus siglas en inglés), para seguidamente ahondar en el diseño de los controladores de corriente y velocidad bajo la óptica de dos técnicas diferentes de control: lineal PI (Proporcional-Integral) y no lineal PBC + PI (Control Basado en Pasividad con acción Proporcional Integral). Estos controladores fueron integrados con una etapa de MPPT (Maximum Power Point Tracking, por sus siglas en inglés) de velocidad basada en el algoritmo P&O (Perturb and Observe, por sus siglas en inglés), sujeto a la estrategia de velocidad variable con pitch fijo. Los resultados obtenidos fueron proponer una guía metodológica que demostró su efectividad y eficiencia al mantener al sistema en torno al punto de máxima potencia cuando es sometido a diferentes condiciones de viento. Además, las técnicas de control demostraron su flexibilidad para la integración en energías renovables aumentando la confiabilidad de los sistemas. Se destacó el control no lineal al tener una respuesta más rápida, permitiéndole al MPPT generar más referencias generando menos estrés sobre el eje de la turbina. La teoría PBC permitió el control sobre las corrientes en los inductores del convertidor. Finalmente, se concluye que la topología SEPIC demostró su versatilidad permitiendo el control de sistemas de mayor potencia.

Biografía del autor/a

David Eduardo Benavides-Mendoza, Universidad Distrital Francisco José de Caldas, Colombia

Universidad Distrital Francisco José de Caldas, Bogotá–Colombia, debenavidesm@udistrital.edu.co

César Leonardo Trujillo-Rodríguez, Universidad Distrital Francisco José de Caldas, Colombia

Universidad Distrital Francisco José de Caldas, Bogotá-Colombia, cltrujillo@udistrital.edu.co

Óscar Danilo Montoya Giraldo, Universidad Distrital Francisco José de Caldas, Colombia

Universidad Distrital Francisco José de Caldas, Bogotá-Colombia, odmontoyag@udistrital.edu.co

Referencias bibliográficas

IEA, “World Energy Outlook 2023,” International Energy Agency, Paris, 2023. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2023

IEA, “Electricity 2024,” International Energy Agency, Paris, 2023. [Online]. Available: https://www.iea.org/reports/electricity-2024

R. Banihabib, F. Skaug Fadnes, and M. Assadi, “Techno-economic optimization of microgrid operation with integration of renewable energy, hydrogen storage, and micro gas turbine,” Renew. Energy, vol. 237, p. 121708, Dec. 2024. https://doi.org/10.1016/j.renene.2024.121708

A. P. Schaffarczyk, Introduction to wind turbine aerodynamics, Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. https://doi.org/10.1007/978-3-642-36409-9

M. Mustafa Kamal, I. Asharaf, and E. Fernandez, “Optimal renewable integrated rural energy planning for sustainable energy development,” Sustainable Energy Technologies and Assessments, vol. 53, p. 102581, Oct. 2022. https://doi.org/10.1016/j.seta.2022.102581

IEA, “Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach,” International Energy Agency, Paris, 2023. [Online]. Available: https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach

K. Twaisan, and N. Barışçı, “Integrated Distributed Energy Resources (DER) and Microgrids: Modeling and Optimization of DERs,” Electronics, vol. 11, no. 18, p. 2816, Sep. 2022. https://doi.org/10.3390/electronics11182816

J. A. Peças Lopes, C. L. Moreira, and A. G. Madureira, “Defining control strategies for MicroGrids islanded operation,” IEEE Transactions on Power Systems, vol. 21, no. 2, pp. 916–924, May. 2006. https://doi.org/10.1109/TPWRS.2006.873018

A. J. Albarakati et al., “Microgrid energy management and monitoring systems: A comprehensive review,” Front. Energy Res., vol. 10, Dec. 2022. https://doi.org/10.3389/fenrg.2022.1097858

V. Vishnuvardhan Yadav, and B. Saravanan, “Technical advances and stability analysis in wind-penetrated power generation systems—A review,” Front. Energy Res., vol. 10, Dec. 2022. https://doi.org/10.3389/fenrg.2022.1091512

Department of Energy, “Microgrid and Integrated Systems Program,” United States Department of Energy, Washington, Rep. 20585, 2022. Accessed: Apr. 5, 2024. [Online]. Available: https://www.energy.gov/oe/articles/microgrid-and-integrated-microgrid-systems-program-report-download

C. Marnay, and G. Venkataramanan, “Microgrids in the evolving electricity generation and delivery infrastructure,” in IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 2006. https://doi.org/10.1109/PES.2006.1709529

A. Hussain, V.-H. Bui, and H.-M. Kim, “Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience,” Applied Energy, vol. 240, pp. 56-72, Apr. 2019. https://doi.org/10.1016/j.apenergy.2019.02.055

D. Baghbanzadeh, J. Salehi, F. Samadi Gazijahani, M. Shafie-khah, and J. P. S. Catalão, “Resilience improvement of multi-microgrid distribution networks using distributed generation,” Sustainable Energy, Grids and Networks, vol. 27, p. 10053, Sep. 2021. https://doi.org/10.1016/j.segan.2021.100503

M. A. Hannan, M. Faisal, P. Jern Ker, R. A. Begum, Z. Y. Dong, and C. Zhang, “Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications,” Renewable and Sustainable Energy Reviews, vol. 131, p. 110022, Oct. 2020. https://doi.org/10.1016/j.rser.2020.110022

Y. Noorollahi, A. Shahriar Kalantari, A. Saifoddin, and H. Yousefi, “Distributed wind and solar power for grid sustainability and emission reduction,” Environ. Prog. Sustain. Energy., vol. 40, no. 6, p. e13686, Nov-Dec. 2021. https://aiche.onlinelibrary.wiley.com/doi/10.1002/ep.13686

Z. Guoping, W. Weijun, and M. Longbo, “An Overview of Microgrid Planning and Design Method,” in IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 2018, pp. 326-329. https://doi.org/10.1109/IAEAC.2018.8577763

S. Sivakumar, M. Jagabar Sathik, P. S. Manoj, and G. Sundararajan, “An assessment on performance of DC-DC converters for renewable energy applications,” Renewable and Sustainable Energy Reviews, vol. 58, pp. 1475-1485, May. 2016. https://doi.org/10.1016/j.rser.2015.12.057

D. Chowdhury, M. Sharif Miah, M. Feroz Hossain, and U. Sarker, “Implementation of a grid-tied emergency back-up power supply for medium and low power application,” Int. J. Electr. Comput. Eng. (IJECE)., vol. 10, no. 6, p. 6233, Dec. 2020. https://doi.org/10.11591/IJECE.V10I6.PP6233-6243

D. W. Hart, Power Electronics. New York, NY, USA: McGraw-Hill Professional, 2010.

A. M. Almas Shahriyar Azad, Z. Tasnim Oishi, M. Ariful Islam, and M. Rakibul Islam, “Advancing Economical and Environmentally Conscious Electrification: A Comprehensive Framework for Microgrid Design in Off-Grid Regions,” Global Challenges, vol. 8, no. 11, Nov. 2024. https://doi.org/10.1002/gch2.202400169

M. I. Juma, B. M. M. Mwinyiwiwa, C. J. Msigwa, and A. T. Mushi, “Design of a hybrid energy system with energy storage for standalone DC microgrid application,” Energies (Basel), vol. 14, no. 18, p. 5994, Sep. 2021. https://doi.org/10.3390/en14185994

Z. Chen, K. Fu, and J. Chen, “Research on Maximum Power Tracking Control Method of Permanent Magnet Synchronous Wind Power Generation in Microgrid,” in 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 2021, pp. 1-8. https://doi.org/10.1109/CIEEC50170.2021.9511058

A. Zentani, A. Almaktoof, M. T. E. Kahn, and M. K. Elmezughi, “An Effectual Control Technique for Islanded Operation of a Step-Up Power Converter Fed by Small Wind Turbine System,” in 2022 International Conference on Electrical Engineering and Sustainable Technologies (ICEEST), Lahore, Pakistan, 2022, pp. 1-6. https://doi.org/10.1109/ICEEST56292.2022.10077860

S. Joshi, M. Karamta, and B. Pandya, “Small scale wind & solar photovoltaic energy conversion system for DC microgrid applications,” Matertoday Proceedings, vol. 62, pp. 7092–7097, 2022. https://doi.org/10.1016/j.matpr.2022.01.461

A. Pritilagna Biswal, and K. Roy, “Modelling and Performance Analysis of a Hybrid Wind and PV Generation System,” in 2022 2nd Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology (ODICON), Bhubaneswar, India, 2022, pp. 1-6. https://doi.org/10.1109/ODICON54453.2022.10009994

E. Himabindu, and M. Gopichand Naik, “Energy Management System for grid integrated microgrid using Fuzzy Logic Controller,” in 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Prayagraj, India, 2020, pp. 1-6. https://doi.org/10.1109/UPCON50219.2020.9376445

L. Khemissi, M.-A. Khalfa, and A. Sellami, “Control and Energy Management of Wind/PV/Battery Smart Microgrid,” in 2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), 2022, pp. 1–6. https://doi.org/10.1109/CISTEM55808.2022.10044026

S. Souraja Panda, and U. Kumar Rout, “Control and Management of Power Exchange in Microgrid,” in 2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC), Gunupur, Odisha, India, 2022, pp. 1-6. https://doi.org/10.1109/iSSSC56467.2022.10051522

T. Thomas, M. K. Mishra, C. Kumar, and M. Liserre, “Control of a PV-Wind Based DC Microgrid With Hybrid Energy Storage System Using Lyapunov Approach and Sliding Mode Control,” IEEE Transactions on Industry Applications, vol. 60, no. 2, pp. 3746–3758, Jan. 2024. https://doi.org/10.1109/TIA.2023.3349359

H. Behret, and A. Korugan, “Performance analysis of a hybrid system under quality impact of returns,” Comput. Ind. Eng., vol. 56, no. 2, pp. 507–520, Mar. 2009. https://doi.org/10.1016/j.cie.2007.11.001

A. Mohammed Abdulelah, O. Ouahid, S. Youcef, M. Abdelhafidh, and M. Mujammal, “Control And Power Management of DC Microgrid Based Wind/Battery/Supercapacitor,” in 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), Sabratha, Libya, 2022, pp. 680-685. https://doi.org/10.1109/MI-STA54861.2022.9837665

D. Zammit, C. Spiteri Staines, A. Micallef, and M. Apap, “Wind MPPT for a PMSG SWT in a Grid-Connected DC Microgrid,” in 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, France, 2019, pp. 1006-1012. https://doi.org/10.1109/CoDIT.2019.8820523

J. Khodabakhsh, E. Mohammadi, and G. Moschopoulos, “PMSG-Based wind energy conversion systems integration into DC microgrids with a novel compact converter,” IEEE Access, vol. 8, pp. 83583–83595, May. 2020. https://doi.org/10.1109/ACCESS.2020.2991668

M. P. Shadakshara Swamy, P. Rakshith, K. S. Varchasvi, N. M. Nithyashree, and H. P. Vinay, “MPPT controlled wind energy conversion system (WECS) supplying DC micro-grid,” in 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 2020. https://doi.org/10.1109/ICSSIT48917.2020.9214151

R. Shankar, T. Sengolrajan, K. Mohanraj, and B. Balraj. “Integration of wind and solar farms in a doubly fed induction generator using hybrid GA-ANN controllers,” Electric Power Syst. Res., vol. 213, p. 108764, Dec. 2022. https://doi.org/10.1016/j.epsr.2022.108764

J. Aourir, and F. Locment, “Limited power point tracking for a small-scale wind turbine intended to be integrated in a DC microgrid,” Applied Sciences, vol. 10, no. 22, p. 8030, Nov. 2020. https://doi.org/10.3390/app10228030

O. D. Montoya, F. M. Serra, and G. Espinosa-Pérez, “On the Equivalence Between PI-PBC and IOC Designs: An Application Involving Three-Phase Front-End Converters,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 1, pp. 241-245, Jan. 2024. https://doi.org/10.1109/TCSII.2023.3299203

B. Boukhezzar, L. Lupu, H. Siguerdidjane, and M. Hand, “Multivariable control strategy for variable speed, variable pitch wind turbines,” Renew. Energy, vol. 32, no. 8, pp. 1273–1287, Jul. 2007. https://doi.org/10.1016/J.RENENE.2006.06.010

H. Basbas, Y.-C. Liu, S. Laghrouche, M. Hilairet, and F. Plestan, “Review on Floating Offshore Wind Turbine Models for Nonlinear Control Design,” Energies vol. 15, no. 15, p. 5477, Jul. 2022. https://doi.org/10.3390/en15155477

R. Cisneros, M. Pirro, G. Bergna, R. Ortega, G. Ippoliti, and M. Molinas, “Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters,” Control Engineering Practice, vol. 43, pp. 109–119, Oct. 2015. https://doi.org/10.1016/j.conengprac.2015.07.002

W. Gil-González, O. D. Montoya, and A. Garces, “Bilinear Control for Three-Phase Microgrids: A Proportional-Integral Passivity-Based Design,” Electric Power Components and Systems, vol. 48, no. 4–5, pp. 447–458, Jul. 2020. https://doi.org/10.1080/15325008.2020.1793831

A. Zentani, A. Almaktoof, and M. Kahn, “DC-DC Boost Converter with P&O MPPT Applied to a Stand-Alone Small Wind Turbine System,” in 2022 30th Southern African Universities Power Engineering Conference (SAUPEC), Durban, South Africa, 2022, pp. 1-5. https://doi.org/10.1109/SAUPEC55179.2022.9730744

M. Mahmoud Eldodor, M. Ayman Mousa, A. Ahmed Farrag, and A. El-Deib, “Small Wind Turbine Design and Implementation Using MPPT Current Control,” in 2020 6th IEEE International Energy Conference (ENERGYCon), 2020, pp. 556–561. https://doi.org/10.1109/ENERGYCon48941.2020.9236586

Y. Bekbouti, A. Chandra, M. Rezkallah, and H. Ibrahim, “Implementation of Rule-based Approach for Power Management in Isolated DC Microgrid Based on Variable Speed Wind Turbine,” in 2020 IEEE Industry Applications Society Annual Meeting, Detroit, MI, USA, 2020, pp. 1-6. https://doi.org/10.1109/IAS44978.2020.9334735

A. Kusumawardana, L. Gumilar, M. Afnan Habibi, S. N. Trisna Saputra, and D. Prasetyo, “Integrated Bi-directional Buck-Boost Converter with Small Wind Turbine for Voltage Load Mitigation using Intelligent Controller,” in 2020 10th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), Malang, Indonesia, 2020, pp. 99-104. https://doi.org/10.1109/EECCIS49483.2020.9263484

A. Jahangir, and S. Mishra, “Autonomous Battery Storage Energy System Control of PV-Wind Based DC Microgrid,” in 2018 2nd International Conference on Power, Energy and Environment: Towards Smart Technology (ICEPE), Shillong, India, 2018, pp. 1-6. https://doi.org/10.1109/EPETSG.2018.8658550

M. Majstorović, D. Mršević, B. Đurić, M. Milešević, Z. Stević, and Ž. V. Despotović, “Implementation of MPPT Methods with SEPIC Converter,” in 2020 19th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 2020, pp. 1-6. https://doi.org/10.1109/INFOTEH48170.2020.9066296

M. K. Asy’Ari, M. B. Toriki, B. E. Apriajumita, and A. Musyafa’, “Design of Fuzzy Logic Control Based on SEPIC Converter for MPPT on Wind Turbine,” in 2022 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, 2022, pp. 444-448. https://doi.org/10.1109/ISITIA56226.2022.9855319

R. Kannan, and V. Sundharajan, “A novel MPPT controller based PEMFC system for electric vehicle applications with interleaved SEPIC converter,” Int J Hydrogen Energy., vol. 48, no. 38, pp. 14391–14405, May 2023. https://doi.org/10.1016/j.ijhydene.2022.12.284

M. Junaid Khan, D. Kumar, Y. Narayan, H. Malik, F. P. García Márquez, and C. Q. Gómez Muñoz, “A novel artificial intelligence maximum power point tracking technique for integrated PV-WT-FC frameworks,” Energies, vol. 15, no. 9, p. 3352, May. 2022. https://doi.org/10.3390/EN15093352

H. El Aissaoui, A. El Ougli, and B. Tidhaf, “MPPT using PSO technique comparing to fuzzy logic and P&O algorithms for Wind Energy Conversion System,” WSEAS Trans. Syst. Control, vol. 17, pp. 305–313, 2022. https://acortar.link/d7sLBP

E. Jessy Mol, and M. Mary Linda, “Integration of Wind and PV Systems Using Genetic-Assisted Artificial Neural Network,” Intelligent Automation & Soft Computing, vol. 35, no. 2, pp. 1471–1489, Jul. 2022. https://doi.org/10.32604/IASC.2023.024027

R. W. Erickson, and D. Maksimović, “Steady-State Equivalent Circuit Modeling, Losses, and Efficiency”, in Fundamentals of power electronics. Cham: Springer International Publishing, 2020. https://doi.org/10.1007/978-3-030-43881-4

E. Babaei, and M. E. Seyed Mahmoodieh, “Calculation of output voltage ripple and design considerations of SEPIC converter,” IEEE Transactions on Industrial Electronics, vol. 61, no. 3, pp. 1213–1222, Mar. 2014. https://doi.org/10.1109/TIE.2013.2262748

O. Carranza Castillo, “Estudio de técnicas de control de rectificadores Boost Trifásicos con filtro LCL para reducción de la distorsión armónica en corriente, aplicadas al procesado eficiente de energía en aerogeneradores síncronos de imanes permanentes operando a velocidad variable,” Tesis de doctorado, Universitat Politècnica de València, España, 2012. http://riunet.upv.es/handle/10251/14575

L. G. González, E. Figueres, G. Garcerá, and O. Carranza, “Maximum-power-point tracking with reduced mechanical stress applied to wind-energy-conversion-systems,” Appl Energy., vol. 87, no. 7, pp. 2304–2312, Jul. 2010. https://doi.org/10.1016/j.apenergy.2009.11.030

R. Sepulchre, M. Janković, and P. V. Kokotović, “Stability Margins and Optimality”, in Constructive Nonlinear Control. London: Springer London, 1997. https://doi.org/10.1007/978-1-4471-0967-9

M. Masoud Namazi, S. M. Saghaian Nejad, A. Tabesh, A. Rashidi, and M. Liserre, “Passivity-Based Control of Switched Reluctance-Based Wind System Supplying Constant Power Load,” IEEE Transactions on Industrial Electronics, vol. 65, no. 12, pp. 9550–9560, Dec. 2018. https://doi.org/10.1109/TIE.2018.2816008

B. Lahfaoui, S. Zouggar, B. Mohammed, and M. Larbi Elhafyani, “Real Time Study of P&O MPPT Control for Small Wind PMSG Turbine Systems Using Arduino Microcontroller,” Energy Procedia, vol. 111, pp. 1000–1009, Mar. 2017. https://doi.org/10.1016/J.EGYPRO.2017.03.263

M. I. Juma, B. M. M. Mwinyiwiwa, C. J. Msigwa, and A. T. Mushi, “Design of a hybrid energy system with energy storage for standalone DC microgrid application,” Energies, vol. 14, no. 18, Sep. 2021. https://doi.org/10.3390/en14185994

K. Nan Yu, and C. Kang Liao, “Applying novel fractional order incremental conductance algorithm to design and study the maximum power tracking of small wind power systems,” Journal of Applied Research and Technology, vol. 13, no. 2, Apr. 2015. https://doi.org/10.1016/J.JART.2015.06.002

B. Meghni, M. Ouada, and S. Saad, “A novel improved variable-step-size P&O MPPT method and effective supervisory controller to extend optimal energy management in hybrid wind turbine,” Electrical Engineering, vol. 102, pp. 763–778, Jun. 2020. https://doi.org/10.1007/s00202-019-00911-9

J. G. Njiri, Y. Liu, and D. Söffker, “Multivariable control of large variable-speed wind turbines for generator power regulation and load reduction,” IFAC-PapersOnLine, vol. 48, no. 1, pp. 544–549, 2015. https://doi.org/10.1016/j.ifacol.2015.05.035

B. Boukhezzar, L. Lupu, H. Siguerdidjane, and M. Hand, “Comparison between linear and nonlinear control strategies for variable speed wind turbines,” Control Eng. Pract., vol. 18, no. 12, pp. 1357–1368, Dec. 2010. https://doi.org/10.1016/J.CONENGPRAC.2010.06.010

A. Mustapha, S. Kumar Selvaperumal, H. Mohd, and R. Lakshmanan, “Ann-based Maximum Power Point Tracking of a variable-speed Wind Energy Conversion System using sepic converter,” Int. J. Adv. Sci. Technol., vol. 29, no. 1, pp. 189–205, Jan. 2020. http://sersc.org/journals/index.php/IJAST/article/view/2989

J. S. Velez, S. Ospina and E. Giraldo, “Passivity-Based Control for a Buck-Boost Converter Applied in Small Wind Generation Interconnected to DC Microgrid,” in 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellin, Colombia, 2019, pp. 1-6. https://doi.org/10.1109/CCAC.2019.8920939

A. H. R. Rosa, T. M. De Souza, L. M. F. Morais, and S. I. Seleme, “Adaptive and Nonlinear Control Techniques Applied to SEPIC Converter in DC-DC, PFC, CCM and DCM Modes Using HIL Simulation,” Energies, vol. 11, no. 3, p. 602, Mar. 2018. https://doi.org/10.3390/en11030602

Cómo citar
[1]
D. E. Benavides-Mendoza, C. L. Trujillo-Rodríguez, y Óscar D. Montoya Giraldo, «Modelado, diseño y control de un sistema de generación eólica basado en MPPT con convertidor electrónico de potencia para la integración de una turbina a una microrred», TecnoL., vol. 28, n.º 62, p. e3130, feb. 2025.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2025-02-17
Sección
Artículos de investigación
Crossref Cited-by logo
Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas