Validación numérica y experimental mediante diagramas de bifurcaciones, para un convertidor DC–DC controlado con control cuasi-deslizante

  • Fredy E. Hoyos Universidad Nacional de Colombia
  • John E. Candelo-Becerra Universidad Nacional de Colombia
  • Nicolás Toro Universidad Nacional de Colombia
Palabras clave: Convertidor reductor DC–DC, bifurcaciones en parámetro de control FPIC, control por modos deslizantes, bifurcaciones de codimensión dos, micro red, red eléctrica

Resumen

Este artículo presenta un análisis de estabilidad del convertidor buck usando la técnica de control de promediado cero (ZAD) y el control por inducción de punto fijo (FPIC), cuando se cambian el parámetro de control

Biografía del autor/a

Fredy E. Hoyos, Universidad Nacional de Colombia

Electrical Engineer, PhD in Engineering-Automation, Facultad de Ciencias, Escuela de Física, Grupo de Investigación en Tecnologías Aplicadas-GITA

John E. Candelo-Becerra, Universidad Nacional de Colombia

Electrical Engineer, PhD in Engineering-Electrical Engineering, Department of Electrical Energy and Automation, Grupo de Investigación en Tecnologías Aplicadas – GITA

Nicolás Toro, Universidad Nacional de Colombia

Electrical Engineer, PhD. in Engineering-Automation, Department of Electrical, Electronic and Computer Engineering

Referencias bibliográficas

[1] F. Hoyos, J. Candelo, and J. Silva, “Performance evaluation of a DC-AC inverter controlled with ZAD-FPIC,” INGE CUC, vol. 14, no. 1, pp. 9–18, 2018.
[2] D. W. Hart, Electrónica de potencia. Madrid: Prentice Hall, 2001.
[3] N. Mohan, Advanced electric drives : analysis, control, and modeling using MATLAB/Simulink. Wiley, 2014.
[4] M. H. Rashid, Power electronics handbook : devices, circuits, and applications. Butterworth-Heinemann, 2011.
[5] A. V Peterchev and S. R. Sanders, “Quantization resolution and limit cycling in digitally controlled PWM converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 301–308, 2003.
[6] H. Peng, A. Prodic, E. Alarcon, and D. Maksimovic, “Modeling of Quantization Effects in Digitally Controlled DC–DC Converters,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 208–215, Jan. 2007.
[7] F. Angulo, F. Hoyos, and G. Olivar, “Experimental results on the quantization in the ADC device for a ZAD-strategy controlled DC-DC buck converter,” in 7th European Nonlinear Dynamics Conference, 2011, pp. 1–6.
[8] Haitao Hu, V. Yousefzadeh, and D. Maksimovic, “Nonuniform A/D Quantization for Improved Dynamic Responses of Digitally Controlled DC-DC Converters,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1998–2005, Jul. 2008.
[9] F. E. Hoyos, D. Burbano, F. Angulo, G. Olivar, N. Toro, and J. A. Taborda, “Effects of Quantization, Delay and Internal Resistances in Digitally ZAD-Controlled Buck Converter,” Int. J. Bifurc. Chaos, vol. 22, no. 10, p. 9, Oct. 2012.
[10] M. Algreer, M. Armstrong, and D. Giaouris, “Adaptive PD+I Control of a Switch-Mode DC–DC Power Converter Using a Recursive FIR Predictor,” IEEE Trans. Ind. Appl., vol. 47, no. 5, pp. 2135–2144, Sep. 2011.
[11] M. Shirazi, R. Zane, and D. Maksimovic, “An Autotuning Digital Controller for DC–DC Power Converters Based on Online Frequency-Response Measurement,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2578–2588, Nov. 2009.
[12] C. W. Fung, C. P. Liu, and M. H. Pong, “A Diagrammatic Approach to Search for Minimum Sampling Frequency and Quantization Resolution for Digital Control of Power Converters,” in 2007 IEEE Power Electronics Specialists Conference, 2007, pp. 826–832.
[13] J. A. Taborda, F. Angulo, and G. Olivar, “Estimation of parameters in Buck converter with Digital-PWM control based on ZAD strategy,” in 2011 IEEE Second Latin American Symposium on Circuits and Systems (LASCAS), 2011, pp. 1–4.
[14] F. E. Hoyos Velasco, N. T. García, and Y. A. Garcés Gómez, “Adaptive Control for Buck Power Converter Using Fixed Point Inducting Control and Zero Average Dynamics Strategies,” Int. J. Bifurc. Chaos, vol. 25, no. 4, p. 13, Apr. 2015.
[15] E. Fossas, R. Griño, and D. Biel, “Quasi-Sliding control based on pulse width modulation, zero averaged dynamics and the L2 norm,” in Advances in Variable Structure Systems, 2000, pp. 335–344.
[16] S. Ashita, G. Uma, and P. Deivasundari, “Chaotic dynamics of a zero average dynamics controlled DC–DC Ćuk converter,” IET Power Electron., vol. 7, no. 2, pp. 289–298, Feb. 2014.
[17] F. Angulo, G. Olivar, J. Taborda, and F. Hoyos, “Nonsmooth dynamics and FPIC chaos control in a DC-DC ZAD-strategy power converter,” in ENOC, 2008, pp. 1–6.
[18] F. Angulo, J. E. Burgos, and G. Olivar, “Chaos stabilization with TDAS and FPIC in a buck converter controlled by lateral PWM and ZAD,” in 2007 Mediterranean Conference on Control & Automation, 2007, pp. 1–6.
[19] J. A. Taborda, S. Santini, M. di Bernardo, and F. Angulo, “Active Chaos Control of a Cam-Follower Impacting System using FPIC Technique*,” IFAC Proc. Vol., vol. 42, no. 7, pp. 327–332, 2009.
[20] D. G. Montoya, C. A. Ramos-Paja, and R. Giral, “Improved Design of Sliding-Mode Controllers Based on the Requirements of MPPT Techniques,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 235–247, Jan. 2016.
Cómo citar
[1]
F. E. Hoyos, J. E. Candelo-Becerra, y N. Toro, «Validación numérica y experimental mediante diagramas de bifurcaciones, para un convertidor DC–DC controlado con control cuasi-deslizante», TecnoL., vol. 21, n.º 42, pp. 147–167, may 2018.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2018-05-14
Sección
Artículos de investigación

Métricas