Evaluation of 3D Microstructured Scaffolds Based on PCL/Fibroin/Silver Nanoparticles as Supports for Skin Cells

Keywords: three-dimensional scaffolds, wet-electrospinning, silk fibroin, silver nanoparticles, dermal tissues

Abstract

Skin tissue engineering is a field in which living cells and scaffolds are used to treat defects. This research aimed to fabricate and evaluate three-dimensional microstructured scaffolds made of polycaprolactone (PCL), silk fibroin, and silver nanoparticles (Ag-NPs) using the wet-electrospinning technique. The methodology consisted of extracting fibroin from Bombyx mori cocoons and synthesizing Ag-NPs via chemical reduction, combining them with PCL solutions to create 3D membranes. These membranes were characterized using scanning electron microscopy (SEM), thermal analysis (TGA and DSC), FTIR spectroscopy, and water contact angle (WCA) measurements. In addition, its cytocompatibility was evaluated by MTT assay with the L929 mouse fibroblast cell line. The results showed that the inclusion of fibroin and Ag-NPs improved the hydrophilicity and cytocompatibility of the scaffolds, in accordance with the ISO 10993-5:2009 standard. The wet-electrospinning technique enabled the formation of porous structures with suitable thermal and morphological properties to mimic the extracellular matrix. Finally, it is concluded that the developed scaffolds show high potential for use as substrates for skin tissue regeneration, highlighting the need for further in vivo studies to support their application in clinical settings.

 

Author Biographies

Felipe Álvarez Serna, Instituto Tecnológico Metropolitano
Mónica Liliana Mejía Suaza, Instituto Tecnológico Metropolitano

Medellín-Colombia, monicamejia@itm.edu.co

María Elena Moncada, Instituto Tecnológico Metropolitano

Medellín-Colombia, mariamoncada@itm.edu.co

Diego Fernando Uribe-Yunda, Instituto Tecnológico Metropolitano

Medellín-Colombia, diegouribe@itm.edu.co

References

T. Weng et al., “3D bioprinting for skin tissue engineering: Current status and perspectives,” J. Tissue Eng., vol. 12, Jul. 2021. https://doi.org/10.1177/20417314211028574

V. Choudhary, M. Choudhary, and W. B. Bollag, “Exploring Skin Wound Healing Models and the Impact of Natural Lipids on the Healing Process,” Int. J. Mol. Sci., vol. 25, no. 7, p. 3790, Mar. 2024. https://doi.org/10.3390/IJMS25073790

A. S. Carlin, “Essentials of wound care: assessing and managing impaired skin integrity,” Nurs. Stand., vol. 37, no. 10, pp. 69–74, Oct. 2022. https://doi.org/10.7748/NS.2022.E11964

F. Afghah et al., “3D printing of silver-doped polycaprolactone-poly (propylene succinate) composite scaffolds for skin tissue engineering,” Biomed. Mater., vol. 15, no. 3, p. 035015, May. 2020. https://doi.org/10.1088/1748-605X/ab7417

M. L. Mejía Suaza, Y. Hurtado Henao, and M. E. Moncada Acevedo, “Wet Electrospinning and its Applications: A Review,” TecnoL., vol. 25, no. 54, p. e2223, Jun. 2022. https://doi.org/10.22430/22565337.2223

N. Bakhtiary, M. Pezeshki-Modaress, and N. Najmoddin, “Wet-electrospinning of nanofibrous magnetic composite 3-D scaffolds for enhanced stem cells neural differentiation,” Chem. Eng. Sci., vol. 264, p. 118144, Dec. 2022. https://doi.org/10.1016/J.CES.2022.118144

M. Shahverdi, S. Seifi, A. Akbari, K. Mohammadi, A. Shamloo, and M. Reza Movahhedy, “Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application,” Sci. Rep., vol. 12, no. 1, p. 19935, Dec. 2022. https://doi.org/10.1038/s41598-022-24275-6

C. Jiang, K. Wang, Y. Liu, C. Zhang, and B. Wang, “Textile-based sandwich scaffold using wet electrospun yarns for skin tissue engineering,” J. Mech. Behav. Biomed. Mater., vol. 119, p. 104499, Jul. 2021. https://doi.org/10.1016/j.jmbbm.2021.104499

X. Jing, H. Li, H.-Y. Mi, Y.-J. Liu, and Y.-M. Tan, “Fabrication of fluffy shish-kebab structured nanofibers by electrospinning, CO2 escaping foaming and controlled crystallization for biomimetic tissue engineering scaffolds,” Chem. Eng. J., vol. 372, pp. 785–795, Sep. 2019. https://doi.org/10.1016/j.cej.2019.04.194

M. Zhang, H. Lin, Y. Wang, G. Yang, H. Zhao, and D. Sun, “Fabrication and durable antibacterial properties of 3D porous wet electrospun RCSC/PCL nanofibrous scaffold with silver nanoparticles,” Appl. Surf. Sci., vol. 414, pp. 52–62, Aug. 2017. https://doi.org/10.1016/j.apsusc.2017.04.052

V. Korniienko et al., “Functional and biological characterization of chitosan electrospun nanofibrous membrane nucleated with silver nanoparticles,” Appl. Nanosci., vol. 12, no. 4, pp. 1061–1070, Apr. 2022. https://doi.org/10.1007/S13204-021-01808-5

J. Yin, Y. Fang, L. Xu, and A. Ahmed, “High-throughput fabrication of silk fibroin/hydroxypropyl methylcellulose (SF/HPMC) nanofibrous scaffolds for skin tissue engineering,” Int. J. Biol. Macromol., vol. 183, pp. 1210–1221, Jul. 2021. https://doi.org/10.1016/J.IJBIOMAC.2021.05.026

K. Yan et al., “3D-bioprinted silk fibroin-hydroxypropyl cellulose methacrylate porous scaffold with optimized performance for repairing articular cartilage defects,” Mater. Des., vol. 225, p. 111531, Jan. 2023. https://doi.org/10.1016/J.MATDES.2022.111531

J. Sik Lim et al., “Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold,” Biopolymers, vol. 97, no. 5, pp. 265–275, May. 2012. https://doi.org/10.1002/bip.22016

M. Peifen et al., “New skin tissue engineering scaffold with sulfated silk fibroin/chitosan/hydroxyapatite and its application,” Biochem. Biophys. Res. Commun., vol. 640, pp. 117–124, Jan. 2023. https://doi.org/10.1016/J.BBRC.2022.11.086

E. Echeverri Correa, D. O. Grajales Lopera, S. Gutiérrez Restrepo, and C. P. Ossa Orozco, “Effective sericin¬fibroin separation from Bombyx mori silkworms fibers and low-cost salt removal from fibroin solution Separación de sericina/fibroína de seda del Bombyx mori y remoción asequible de sales,” Rev. Fac. Ing. Univ. Antioquia, no. 94, pp. 97-101, Oct. 2020. http://hdl.handle.net/10495/24955

G. A. Cuervo-Osorio, M. Escobar-Jaramillo, and C. P. Ossa-Orozco, “Diseño factorial 2k para la optimización de la síntesis de nanopartículas de plata para su aplicación en biomateriales,” Rev. ION, vol. 33, no. 1, pp. 17–32, Jun. 2020. https://doi.org/10.18273/revion.v33n1-2020002

H. Urena-Saborio, G. Rodríguez, S. Madrigal-Carballo, and S. Gunasekaran, “Characterization and applications of silver nanoparticles-decorated electrospun nanofibers loaded with polyphenolic extract from rambutan (Nepelium lappaceum),” Materialia, vol. 11, p. 100687, Jun. 2020. https://doi.org/10.1016/j.mtla.2020.100687

S. Patil, and N. Singh, “Antibacterial silk fibroin scaffolds with green synthesized silver nanoparticles for osteoblast proliferation and human mesenchymal stem cell differentiation,” Colloids Surf. B Biointerfaces, vol. 176, pp. 150–155, Apr. 2019. https://doi.org/10.1016/j.colsurfb.2018.12.067

J. P. Gallo Ramírez, and C. P. Ossa Orozco, “Fabricación y caracterización de nanopartículas de plata con potencial uso en el tratamiento del cáncer de piel,” Ing. Des., vol. 37, no. 1, pp. 88–104, Jan. 2019. https://doi.org/10.14482/inde.37.1.6201

S. Mohammadzadehmoghadam, and Y. Dong, “Fabrication and characterization of electrospun silk fibroin/gelatin scaffolds crosslinked with glutaraldehyde vapor,” Front. Mater., vol. 6, May. 2019. https://doi.org/10.3389/fmats.2019.00091

C. S. Shivananda, B. Lakshmeesha Rao, and Sangappa, “Structural, thermal and electrical properties of silk fibroin–silver nanoparticles composite films,” J. Mater. Sci. Mater. Electron., vol. 31, no. 1, pp. 41–51, Jan. 2020. https://doi.org/10.1007/s10854-019-00786-3

M. Buitrago-Vásquez, and C. P. Ossa-Orozco, “Degradation, water uptake, injectability and mechanical strength of injectable bone substitutes composed of silk fibroin and hydroxyapatite nanorods,” Rev. Fac. Ingen., vol. 27, no. 48, pp. 49–60, May. 2018. https://doi.org/10.19053/01211129.v27.n48.2018.8072

H. Alissa Alam, A. Deniz Dalgic, A. Tezcaner, C. Ozen, and D. Keskin, “A comparative study of monoaxial and coaxial PCL/gelatin/Poloxamer 188 scaffolds for bone tissue engineering,” Int. J. Polymeric Mater. Polymeric Biomater., vol. 69, no. 6, pp. 339–350, Mar. 2019. https://doi.org/10.1080/00914037.2019.1581198

Y. Eun Choe, and G. Hyung Kim, “A PCL/cellulose coil-shaped scaffold via a modified electrohydrodynamic jetting process,” Virtual Phys. Prototyp., vol. 15, no. 4, pp. 403–416, Aug. 2020. https://doi.org/10.1080/17452759.2020.1808269

B. Cinici, S. Yaba, M. Kurt, H. C. Yalcin, L. Duta, and O. Gunduz, “Fabrication Strategies for Bioceramic Scaffolds in Bone Tissue Engineering with Generative Design Applications,” Biomimetics, vol. 9, no. 7, p. 409, Jul. 2024. https://doi.org/10.3390/BIOMIMETICS9070409

M. Tominac Trcin et al., “Poly(ε-caprolactone) Titanium Dioxide and Cefuroxime Antimicrobial Scaffolds for Cultivation of Human Limbal Stem Cells,” Polymers, vol. 12, no. 8, p. 1758, Aug. 2020. https://doi.org/10.3390/POLYM12081758

Sigma-Aldrich, “Physical Properties of Solvent,” sigmaaldrich.com. Accessed: May 29, 2025. [Online]. Available: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/614/456/labbasics_pg144.pdf?msockid=38c0c889d925620f3c0bdd0ad88a63df

Z. Chen et al., “Influences of Process Parameters of Near-Field Direct-Writing Melt Electrospinning on Performances of Polycaprolactone/Nano-Hydroxyapatite Scaffolds,” Polymers, vol. 14, no. 16, p. 3404, Aug. 2022. https://doi.org/10.3390/POLYM14163404

B. Maharjan et al., “In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering,” Mater. Sci. Eng. C Mater. Biol. Appl., vol. 114, p. 111056, Sep. 2020. https://doi.org/10.1016/j.msec.2020.111056

E. Correa, M. E. Moncada, and V. H. Zapata, “Electrical characterization of an ionic conductivity polymer electrolyte based on polycaprolactone and silver nitrate for medical applications,” Mater. Lett., vol. 205, pp. 155–157, Oct. 2017. https://doi.org/10.1016/j.matlet.2017.06.046

T. De Paula de Lima Lima et al., “Poly (ε-caprolactone)-Based Scaffolds with Multizonal Architecture: Synthesis, Characterization, and In Vitro Tests,” Polymers, vol. 15, no. 22, p. 4403, Nov. 2023. https://doi.org/10.3390/POLYM15224403

B. Caglayan, and G. Basal, “Electrospun Polycaprolactone / Silk Fibroin Nanofibers Loaded With Curcumin for Wound Dressing Applications,” Digest J. Nanomater. Biostr., vol. 15, no. 4, pp. 1165–1173, Oct-Dec. 2020. https://doi.org/10.15251/DJNB.2020.154.1165

M. Rafiei, E. Jooybar, M. J. Abdekhodaie, and M. Alvi, “Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery,” Mater. Sci. Eng. C Mater. Biol. Appl., vol. 113, p. 110913, Aug. 2020. https://doi.org/10.1016/J.MSEC.2020.110913

How to Cite
[1]
F. Álvarez Serna, M. L. Mejía Suaza, M. E. Moncada, and D. F. Uribe-Yunda, “Evaluation of 3D Microstructured Scaffolds Based on PCL/Fibroin/Silver Nanoparticles as Supports for Skin Cells”, TecnoL., vol. 28, no. 64, p. e3345, Sep. 2025.

Downloads

Download data is not yet available.
Published
2025-09-09
Section
Research Papers
Crossref Cited-by logo
Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Funding data

Some similar items: