Quasi-switched inverter using space vector pulse width modulation with triangular comparison for photovoltaic applications

  • Iván F. Moran Universidad del Valle
  • José A. Restrepo Universidad Simón Bolívar
  • Martha L. Orozco-Gutierrez Universidad del Valle
  • José M. Ramirez-Scarpetta Universidad del Valle
Keywords: Quasi-Switched Boost Inverter, Space Vector Modulation, Sinusoidal Modulation, Embedded System, PV Microinverter

Abstract

This work analyzes a prototype of a quasi-switched boost inverter (qSBI) feeding an isolated resistive load from a DC source. The use of spatial vector pulse width modulation (SPWM) with triangular comparison is proposed to increase the qSBI gain factor, and its performance is contrasted with other types of spatial vector modulations, such as discontinuous modulations. To verify the validity of the method for voltage range extension in the qSBI converter, a semi-customized test platform was developed. This platform uses a DSP floating point card (Analog Devices ADSP-21369) for processing and control strategies and an interface card that includes a programmable logic array (FPGA) from Xilinx (Spartan-3), which allows to develop the synchronized modulation qSBI needs. The experimental results show improvements in the performance of the qSBI converter in terms of gain factor, voltage reduction in the capacitor, and input current profiles. Discontinuous space vector modulation strategies do not perform well when compared to continuous SVPWM or SPWM modulations, because the ripple levels in the currents taken from the PV module are approximately twice as great as in continuous modulation techniques. Finally, the usefulness of a qSBI as PV microinverter is confirmed by two practical experimental cases of a PV photovoltaic system with a maximum power point adjustment algorithm (MPPT).

Downloads

Download data is not yet available.

Author Biographies

Iván F. Moran, Universidad del Valle

Electronic Engineer, Escuela de Ingeniería Eléctrica y Electrónica

José A. Restrepo, Universidad Simón Bolívar

PhD. in Electrical Engineering and Electronics, Departamento de Electrónica y Circuitos, Universidad Simón Bolívar, Caracas-Venezuela. Facultad de Ingeniería en Ciencias Aplicadas, Universidad Técnica del Norte, Ibarra-Ecuador

Martha L. Orozco-Gutierrez, Universidad del Valle

PhD. in Engineering, Escuela de Ingeniería Eléctrica y Electrónica

José M. Ramirez-Scarpetta, Universidad del Valle

PhD. in Control Systems, Escuela de Ingeniería Eléctrica y Electrónica

References

[1] M.-K. Nguyen, T.-V. Le, S.-J. Park, and Y.-C. Lim, “A Class of Quasi-Switched Boost Inverters,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1526–1536, Mar. 2015.
[2] F. Z. Peng, “Z-source inverter,” in Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344), 2003, vol. 2, no. 2, pp. 775–781.
[3] O. Ellabban and H. Abu-Rub, “Z-Source Inverter: Topology Improvements Review,” IEEE Ind. Electron. Mag., vol. 10, no. 1, pp. 6–24, Mar. 2016.
[4] J. Ra̧bkowski, “The bidirectional Z-source inverter as an energy storage/grid interface,” in EUROCON 2007 - The International Conference on Computer as a Tool, 2007, pp. 1629–1635.
[5] Yu Tang, Shaojun Xie, Chaohua Zhang, and Zegang Xu, “Improved Z-Source Inverter With Reduced Z-Source Capacitor Voltage Stress and Soft-Start Capability,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 409–415, Feb. 2009.
[6] Y. Zhu, M. Chen, X. Lee, and Y. Tsutomu, “A novel quasi-resonant soft-switching Z-source inverter,” in 2012 IEEE International Conference on Power and Energy (PECon), 2012, pp. 292–297.
[7] S. Mishra, R. Adda, and A. Joshi, “Inverse watkins-johnson topology-based inverter,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1066–1070, 2012.
[8] G. Spagnuolo, G. Petrone, B. Lehman, C. A. Ramos Paja, B. L. Ye Zhao, and M. L. Orozco Gutierrez, “Control of Photovoltaic Arrays: Dynamical Reconfiguration for Fighting Mismatched Conditions and Meeting Load Requests,” IEEE Ind. Electron. Mag., vol. 9, no. 1, pp. 62–76, Mar. 2015.
[9] D. M. Scholten, N. Ertugrul, and W. L. Soong, “Micro-inverters in small scale PV systems: A review and future directions,” in 2013 Australasian Universities Power Engineering Conference (AUPEC), 2013, pp. 1–6.
[10] M.-K. Nguyen, Y.-C. Lim, and S.-J. Park, “A Comparison Between Single-Phase Quasi- Z-Source and Quasi-Switched Boost Inverters,” IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6336–6344, Oct. 2015.
[11] V. Blasko, “Analysis of a hybrid PWM based on modified space-vector and triangle-comparison methods,” IEEE Trans. Ind. Appl., vol. 33, no. 3, pp. 756–764, 1997.
[12] J. Restrepo, Víctor Guzmán, M. Giménez, A. Bueno, and J. Aller, “Parallelogram Based Method for Space Vector Pulse Width Modulation,” Rev. Fac. Ing. Univ. Antioquia, no. 52, pp. 161–171, 2010.
[13] J. Restrepo, J. M. Aller, A. Bueno, V. M. Guzmán, and María I. Giménez, “Generalized algorithm for pulse width modulation using a two-vectors based technique,” EPE J., vol. 21, no. 2, pp. 30–39, 2011.
[14] K. Zhou and D. Wang, “Relationship between space-vector modulation and three-phase carrier-based PWM: a comprehensive analysis,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 186–196, 2002.
[15] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “A high-performance generalized discontinuous PWM algorithm,” IEEE Trans. Ind. Appl., vol. 34, no. 5, pp. 1059–1071, 1998.
[16] T. Esram and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439–449, 2007.
[17] P. Manganiello, M. Ricco, G. Petrone, E. Monmasson, and G. Spagnuolo, “Optimization of Perturbative PV MPPT Methods Through Online System Identification,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6812–6821, Dec. 2014.
How to Cite
Moran, I., Restrepo, J., Orozco-Gutierrez, M., & Ramirez-Scarpetta, J. (2018, May 14). Quasi-switched inverter using space vector pulse width modulation with triangular comparison for photovoltaic applications. TecnoLógicas, 21(42), 95-110. https://doi.org/10.22430/22565337.781
Published
2018-05-14
Section
Research Papers