Development of a small-scale residential microgrid prototype

  • Wilmer Guacaneme Universidad Distrital Francisco José de Caldas
  • Andrés F. Rodríguez Universidad Distrital Francisco José de Caldas
  • Luis M. Gómez Universidad Distrital Francisco José de Caldas
  • Francisco Santamaría Universidad Distrital Francisco José de Caldas
  • César Trujillo Universidad Distrital Francisco José de Caldas
Keywords: Energy storage, Emulator, Distributed Generation (DG), Microgrid (MG), Energy Management System (EMS), Vehicle to Grid (V2G)

Abstract

This paper presents the development of an isolated residential microgrid (MR) emulator that includes distributed photovoltaic generation, energy storage using batteries, and electric vehicle technology supplying energy to the power grid (V2G). A study established the main loads in a residential facility and the priority that users give to each of them. Additionally, an energy management system (EMS) was implemented to define the selection criteria and parameters to determine the appropriate energy source at a given time and the operation of the loads according to the availability of energy. In addition, this article presents the design and sizing of the power elements that allow to supply energy to the residential loads. Once the emulator of the isolated residential microgrid was implemented, several laboratory tests were conducted. They enabled to verify the correct operation of the elements of the prototype and the implemented energy management system. The results show that the emulator developed in this work is a powerful academic and research tool that allows multiple tests and experimental setups that facilitate the understanding and validation of calculations and theoretical approximations in the field of isolated electrical microgrids.

Downloads

Download data is not yet available.

Author Biographies

Wilmer Guacaneme, Universidad Distrital Francisco José de Caldas

Ing. Eléctrico, Grupos GCEM y LIFAE, Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá-Colombia

Andrés F. Rodríguez, Universidad Distrital Francisco José de Caldas

Ing. Eléctrico, Grupos GCEM y LIFAE, Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá-Colombia

Luis M. Gómez, Universidad Distrital Francisco José de Caldas

Ing. Eléctrico, Grupos GCEM y LIFAE, Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá-Colombia

Francisco Santamaría, Universidad Distrital Francisco José de Caldas

PhD. en Ingeniería, M.SC en Ingeniería Eléctrica, Ing. Electricista, Profesor Asociado, Investigador Grupo GCEM, Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá-Colombia

César Trujillo, Universidad Distrital Francisco José de Caldas

PhD. en Ingeniería Electrónica, M.SC en Ingeniería Eléctrica, Ing. Electrónico, Profesor Titular, Investigador Grupo LIFAE, Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá-Colombia

References

[1] A. Aggarwal, A. Singhal, and S. J. Darak, “Clean and Green India: Is Solar Energy the Answer?,” IEEE Potentials, vol. 37, no. 1, pp. 40–46, Jan. 2018.
[2] L. Meng, E. R. Sanseverino, A. Luna, T. Dragicevic, J. C. Vásquez, and J. M. Guerrero, “Microgrid supervisory controllers and energy management systems: A literature review,” Renew. Sustain. Energy Rev., vol. 60, pp. 1263–1273, Jul. 2016.
[3] Xiang Eric Yu, Yanbo Xue, S. Sirouspour, and A. Emadi, “Microgrid and transportation electrification: A review,” in 2012 IEEE Transportation Electrification Conference and Expo (ITEC), 2012, pp. 1–6.
[4] C. Shum et al., “The development of a smart grid co-simulation platform and case study on Vehicle-to-Grid voltage support application,” in 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm), 2013, pp. 594–599.

[5] C. C. Mendoza, A. M. Quintero, F. Santamaría, and A. Alarcón, “Coordinated recharge of electric vehicles in real time,” DYNA, vol. 83, no. 197, p. 222, Jun. 2016.
[6] C. Mendoza, A. Quintero, F. Santamaría, and A. Alarcon, “Estimation of electric energy required by electric vehicles based on travelled distances in a residential zone,” TECCIENCIA, vol. 11, no. 21, pp. 17–24, Sep. 2016.
[7] A. Anvari-Moghaddam, J. M. Guerrero, J. C. Vásquez, H. Monsef, and A. Rahimi-Kian, “Efficient energy management for a grid-tied residential microgrid,” IET Gener. Transm. Distrib., vol. 11, no. 11, pp. 2752–2761, Aug. 2017.
[8] T. Sattarpour, D. Nazarpour, and S. Golshannavaz, “A multi-objective HEM strategy for smart home energy scheduling: A collaborative approach to support microgrid operation,” Sustain. Cities Soc., vol. 37, pp. 26–33, Feb. 2018.
[9] A. M. Vega, F. Santamaria, and E. Rivas, “Modeling for home electric energy management: A review,” Renew. Sustain. Energy Rev., vol. 52, pp. 948–959, Dec. 2015.
[10] I. R. Pinzón Vela, “Estimación de funciones de consumo de energia eléctrica para clientes residenciales en Bogotá ,” Pontificia Universidad Javeriana, 2010.
[11] J. P. Lozano Celis and W. C. Guzmán Espitia, “Evaluación de demanda de energía eléctrica según hábitos de consumo actuales en la ciudad de Bogotá,” Universidad Distrital Francisco José de Caldas, 2016.
[12] K. A. Hernández Hernández and J. S. Carrillo Cruz, “Análisis de la curva de demanda eléctrica para usuarios residenciales estrato 4 en la ciudad de Bogotá ante diferentes escenarios de los hábitos de consumo,” Universidad Distrital Francisco José de Caldas, 2017.
[13] Empresas Públicas de Medellín, “Uso inteligente de la energía eléctrica Banco de recomendaciones,” EPM, 2012. [Online]. Available: https://www.epm.com.co/site/Portals/2/documentos/banco_de_recomendaciones_uso_inteligente_energia_electricamarzo_27.pdf.
[14] Universidad Nacional de Colombia, “Determinación del consumo final de energía en los sectores residencial urbano y comercial y determinación de consumos para equipos domésticos de energía eléctrica y gas,” Bogotá, 2006.
[15] Corporación para la Energía y el Medio Ambiente. Corpoema, “Caracterización energética del sector residencial urbano y rural en colombia,” Bogotá, vol.1, 2012.
[16] Corporación para la Energía y el Medio Ambiente. Corpoema, “Caracterización energética del sector residencial urbano y rural en colombia,” vol.2, Bogotá, 2012.
[17] A. M. Vega Escobar, “Gestión de la energía eléctrica domiciliaria con base en la gestión activa de la demanda,” Universidad Distrital Francisco José de Caldas, 2018.
[18] Instituto Colombiano de Normas Técnicas y Certificación, Código eléctrico colombiano – NTC 2050, 1st ed. Bogotá: ICONTEC, 2002.
[19] S. J. Chiang, Hsin-Jang Shieh, and Ming-Chieh Chen, “Modeling and Control of PV Charger System With SEPIC Converter,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4344–4353, Nov. 2009.
[20] H. R. Galiveeti, A. K. Goswami, and N. B. Dev Choudhury, “Impact of plug-in electric vehicles and distributed generation on reliability of distribution systems,” Eng. Sci. Technol. an Int. J., vol. 21, no. 1, pp. 50–59, Feb. 2018.
[21] G. A. Putrus, P. Suwanapingkarl, D. Johnston, E. C. Bentley, and M. Narayana, “Impact of electric vehicles on power distribution networks,” in 2009 IEEE Vehicle Power and Propulsion Conference, 2009, pp. 827–831.
[22] D. Martínez Vicente, “El impacto del vehículo eléctrico en la red de distribución,” Universitat Politécnica de Catalunya, 2011.
[23] J. Kalawoun, K. Biletska, F. Suard, and M. Montaru, “From a novel classification of the battery state of charge estimators toward a conception of an ideal one,” J. Power Sources, vol. 279, pp. 694–706, Apr. 2015.
[24] E. Prieto-Araujo, P. Olivella-Rosell, M. Cheah-Mañe, R. Villafafila-Robles, and O. Gomis-Bellmunt, “Renewable energy emulation concepts for microgrids,” Renew. Sustain. Energy Rev., vol. 50, pp. 325–345, Oct. 2015.
[25] L. K. Gan, B. Riar, J. Lee, and D. Howey, “Low-cost modular PV-battery microgrid emulator for testing of energy management algorithms,” in 2017 IEEE Second International Conference on DC Microgrids (ICDCM), 2017, pp. 602–608.
[26] E. Radu, P. Dorin, P. Toma, and L. Eniko, “An islanded renewable energy microgrid emulator for geothermal, biogas, photovoltaic and lead acid battery storage,” in 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), 2017, pp. 2109–2114
How to Cite
Guacaneme, W., Rodríguez, A., Gómez, L., Santamaría, F., & Trujillo, C. (2018). Development of a small-scale residential microgrid prototype. TecnoLógicas, 21(43), 107-125. https://doi.org/10.22430/22565337.1065
Published
2018-09-14
Section
Articles