Evaluation of FeCl3 and PAC for the potabilization of water with high content of color and low turbidity

Keywords: Ferric chloride (FeCl3), Aluminum polychloride (PAC), Humic substances (SH), Color, Turbidity

Abstract

The water source for supply from moorland is characterized by its high color and low turbidity, which represents an inconvenience to be considered in most water treatment plants. Internationally, studies have been carried out in this regard, but in general, the proposed solutions are costly and do not fully adapt to this type of Colombian water sources (a country in which no research is recorded). The purpose of this work was the evaluation of FeCl3 as a primary coagulant and PAC (Poly Aluminium Chloride) as auxiliary on a laboratory scale for the water purification with high color and low turbidity. The jar test was performed with FeCl3, PAC, FeCl3 + PAC as a coagulation aid and FeCl3 + PAC as a flocculation aid. The parameters evaluated were pH, color, and turbidity, before and after the treatments; with a dose range for FeCl3 between 36-42 mg/L and for PAC between 0.2-0.5 mg/L. The results displayed that in terms of color removal, the FeCl3 + PAC combination as a coagulation aid showed the highest efficiency among the treatments studied (86.9%), while for turbidity removal the yield reached 80.2%. Likewise, it was demonstrated that this alternative represents a cost savings when compared to PAC as sole coagulant (between 25.5 - 34.2%), depending on the treated flow. Regarding compliance with Colombian regulations in force, the maximum permissible values are (Color = 15 UPC, Turbidity = 2 UNT), with the exception of pH that must be between 6.5-9.0, and that must be stabilized before to send the treated water through the distribution network. 

Author Biographies

Jeffrey Yanza-López, Universidad Manuela Beltrán, Colombia

Ingeniero Ambiental, Especialización en Agua y Saneamiento Ambiental, Escuela de Posgrados, Universidad Manuela Beltrán, Bogotá-Colombia, Jeffrey.yanza@estudiantes.umb.edu.co

Robert Rivera-Hernández, Universidad Manuela Beltrán, Colombia

Ingeniero Civil, Especialización en Agua y Saneamiento Ambiental, Escuela de Posgrados, Universidad Manuela Beltrán, Bogotá-Colombia, robert.rivera@estudiantes.umb.edu.co

Luisa Gómez-Torres, Universidad Manuela Beltrán, Colombia

PhD en Ingeniería Química, Grupo de Sistemas y Recursos Ambientales Sostenibles (Syras), Universidad Manuela Beltrán, Bogotá-Colombia, luisa.gomez@docentes.umb.edu.co

Carlos Zafra-Mejía, *, Universidad Distrital Francisco José de Caldas, Colombia

PhD en Ingeniería Ambiental, Facultad de Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas Bogotá-Colombia, czafra@udistrital.edu.co
*Corresponding author

References

T. Tuhkanen and A. Ignatev, “Humic and Fulvic Compounds,” in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 3rd Editio., Finland: Elsevier, 2005. https://doi.org/10.1016/B978-0-12-409547-2.14413-0, pp. 288–298.

M. Sillanpää, “Chapter 1 - General Introduction,” in Natural Organic Matter in Water, Butterworth-Heinemann, Ed. Finland: Butterworth-Heinemann, 2015. https://doi.org/10.1016/B978-0-12-801503-2.00001-X, pp. 1–15.

G. A. Edwards and A. Amirtharajah, “Removing Color Caused by Humic Acids,” J. Am. Water Works Assoc., vol. 77, no. 3, pp. 50–57, Mar. 1985. https://doi.org/10.1002/j.1551-8833.1985.tb05508.x.

H. R. Mian, G. Hu, K. Hewage, M. J. Rodriguez, and R. Sadiq, “Prioritization of unregulated disinfection by-products in drinking water distribution systems for human health risk mitigation: A critical review,” Water Res., vol. 147, pp. 112–131, Dec. 2018. https://doi.org/10.1016/j.watres.2018.09.054.

W. L. Ang, A. W. Mohammad, Y. H. Teow, A. Benamor, and N. Hilal, “Hybrid chitosan/FeCl3 coagulation–membrane processes: Performance evaluation and membrane fouling study in removing natural organic matter,” Sep. Purif. Technol., vol. 152, pp. 23–31, Sep. 2015. https://doi.org/10.1016/j.seppur.2015.07.053.

J. Holden, P. J. Chapman, S. M. Palmer, P. Kay, and R. Grayson, “The impacts of prescribed moorland burning on water colour and dissolved organic carbon: A critical synthesis,” J. Environ. Manage., vol. 101, pp. 92–103, Jun. 2012. https://doi.org/10.1016/j.jenvman.2012.02.002.

F. Worrall and T. Burt, “Predicting the future DOC flux from upland peat catchments,” J. Hydrol., vol. 300, no. 1–4, pp. 126–139, Jan. 2005. https://doi.org/10.1016/j.jhydrol.2004.06.007.

M. C. Collivignarelli, A. Abbà, M. Carnevale Miino, and S. Damiani, “Treatments for color removal from wastewater: State of the art,” J. Environ. Manage., vol. 236, pp. 727–745, Apr. 2019. https://doi.org/10.1016/j.jenvman.2018.11.094.

M. Sillanpää, M. C. Ncibi, A. Matilainen, and M. Vepsäläinen, “Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review,” Chemosphere, vol. 190, pp. 54–71, Jan. 2018. https://doi.org/10.1016/j.chemosphere.2017.09.113.

J. Arboleda Valencia, Teoría y práctica de la purificación del agua, Tercera ed. Bogotá: McGraw-Hill Interamericana S.A., 2000.

A. Matilainen, M. Vepsäläinen, and M. Sillanpää, “Natural organic matter removal by coagulation during drinking water treatment: A review,” Adv. Colloid Interface Sci., vol. 159, no. 2, pp. 189–197, Sep. 2010. https://doi.org/10.1016/j.cis.2010.06.007.

A. M. Sánchez and V. V. Rengifo, “Estudio de los parámetros óptimos de tratabilidad para la fuente de abastecimiento de la planta Palacé en el municipio de Popayán, Departamento del Cauca,” Universidad del Cauca, Popayán, Colombia, 2013.

A. P. López-Martínez and J. E. Ramírez-Palencia, “Estudio del comportamiento hidráulico de las unidades de floculación y sedimentación de la planta Palacé en la ciudad de Popayán, mediante el uso de trazadores,” Universidad del Cauca, Popayán, Colombia, 2014.

J. Yu, D. Wang, M. Yan, C. Ye, M. Yang, and X. Ge, “Optimized Coagulation of High Alkalinity, Low Temperature and Particle Water: pH Adjustment and Polyelectrolytes as Coagulant Aids,” Environ. Monit. Assess., vol. 131, no. 1–3, pp. 377–386, Jun. 2007. https://doi.org/10.1007/s10661-006-9483-3.

R. I. Méndez Novelo, E. R. Castillo Borges, M. R. Sauri Riancho, C. A. Quintal Franco, G. Giácoman Vallejos, and B. Jiménez Cisneros, “Comparación de cuatro tratamientos fisicoquímicos de lixiviados,” Rev. Int. Contam. Ambient., vol. 25, no. 3, pp. 133–145, Aug. 2009.

L.-C. Lee et al., “Unusual Roles of Discharge, Slope and SOC in DOC Transport in Small Mountainous Rivers, Taiwan,” Sci. Rep., vol. 9, no. 1, p. 1574, Dec. 2019. https://doi.org/10.1038/s41598-018-38276-x.

G. Mitchell and A. T. McDonald, “Catchment Characterization as a Tool for Upland Water Quality Management,” J. Environ. Manage., vol. 44, no. 1, pp. 83–95, May 1995. https://doi.org/10.1006/jema.1995.0032.

M. J. Scott, M. N. Jones, C. Woof, and E. Tipping, “Concentrations and fluxes of dissolved organic carbon in drainage water from an upland peat system,” Environ. Int., vol. 24, no. 5–6, pp. 537–546, Jul. 1998. https://doi.org/10.1016/S0160-4120(98)00043-9.

A. Baker, L. Bolton, M. Newson, and R. G. M. Spencer, “Spectrophotometric properties of surface water dissolved organic matter in an afforested upland peat catchment,” Hydrol. Process., vol. 22, no. 13, pp. 2325–2336, Jun. 2008. https://doi.org/10.1002/hyp.6827.

H. H. Hermann, E. Hoffman, and H. Odegaard, Chemical Water and Wastewater Treatment VIII. Orlando: IWA Publishing, 2004.

P. Jarvis, B. Jefferson, and S. A. Parsons, “Breakage, Regrowth, and Fractal Nature of Natural Organic Matter Flocs,” Environ. Sci. Technol., vol. 39, no. 7, pp. 2307–2314, Apr. 2005. https://doi.org/10.1021/es048854x.

H. Ratnaweera, “Comparison of the coagulation behavior of different Norwegian aquatic NOM sources,” Environ. Int., vol. 25, no. 2–3, pp. 347–355, Apr. 1999. https://doi.org/10.1016/S0160-4120(98)00112-3.

E. Smith and Y. Kamal, “Optimizing treatment for reduction of disinfection by-product (DBP) formation,” Water Sci. Technol. Water Supply, vol. 9, no. 2, pp. 191–198, Jun. 2009. https://doi.org/10.2166/ws.2009.120.

J. Tian, Z. Chen, J. Nan, H. Liang, and G. Li, “Integrative membrane coagulation adsorption bioreactor (MCABR) for enhanced organic matter removal in drinking water treatment,” J. Memb. Sci., vol. 352, no. 1–2, pp. 205–212, Apr. 2010. https://doi.org/10.1016/j.memsci.2010.02.018.

M. Yan, D. Wang, J. Qu, J. Ni, and C. W. K. Chow, “Enhanced coagulation for high alkalinity and micro-polluted water: The third way through coagulant optimization,” Water Res., vol. 42, no. 8–9, pp. 2278–2286, Apr. 2008. https://doi.org/10.1016/j.watres.2007.12.006.

Acueducto y Alcantarillado de Popayán S.A E.S.P., “Manual para la construcción de redes de acueducto y alcantarillado en el municipio de Popayan,” Popayán, Colombia, 2009.

Instituto Colombiano de Normas Técnicas, Procedimiento para el ensayo de coagulación-floculación en un recipiente con agua o método de jarras-NTC3903. 2010, p. 9.

Ministerio de Vivienda, Ciudad y Territorio de Colombia, “Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico - RAS,” Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico - RAS, 2017. http://www.minvivienda.gov.co/viceministerios/viceministerio-de-agua/reglamento-tecnico-del-sector/reglamento-tecnico-del-sector-de-agua-potable .

W. J. Weber, Control de la calidad del agua: procesos fisicoquímicos. Barcelona: Reverte, 1979.

D. Trujillo, L. F. Duque, J. S. Arcila, A. Rincón, S. Pacheco, and O. F. Herrera, “Remoción de turbiedad en agua de una fuente natural mediante coagulación/floculación usando almidón de plátano,” Rev. ION, vol. 27, no. 1, pp. 17–34, Jun. 2014.

A. E. Childress, E. M. Vrijenhoek, M. Elimelech, T. S. Tanaka, and M. D. Beuhler, “Particulate and THM Precursor Removal with Ferric Chloride,” J. Environ. Eng., vol. 125, no. 11, pp. 1054–1061, Nov. 1999. https://doi.org/10.1061/(ASCE)0733-9372(1999)125:11(1054))

R. Li et al., “Effects of chlorination operating conditions on trihalomethane formation potential in polyaluminum chloride-polymer coagulated effluent,” J. Hazard. Mater., vol. 285, pp. 103–108, Mar. 2015. https://doi.org/10.1016/j.jhazmat.2014.11.048.

A. M. Hansen, T. E. C. Kraus, S. M. Bachand, W. R. Horwath, and P. A. M. Bachand, “Wetlands receiving water treated with coagulants improve water quality by removing dissolved organic carbon and disinfection byproduct precursors,” Sci. Total Environ., vol. 622–623, pp. 603–613, May 2018. https://doi.org/10.1016/j.scitotenv.2017.11.205.

D. A. Cornwell, D. K. Roth, and R. A. Brown, Minimizing water treatment residual discharges to surface water. Denver: Water Research Foundation, 2010.

How to Cite
Yanza-López, J., Rivera-Hernández, R., Gómez-Torres, L., & Zafra-Mejía, C. (2019). Evaluation of FeCl3 and PAC for the potabilization of water with high content of color and low turbidity. TecnoLógicas, 22(45), 9-21. https://doi.org/10.22430/22565337.1085

Downloads

Download data is not yet available.
Published
2019-05-15
Section
Research Papers