Comportamiento de descargadores de sobretensión ante tensiones inducidas por rayos sobre líneas de distribución ubicadas en zona montañosa

Palabras clave: Tensiones inducidas por rayo,, terrenos no planos, descargadores de sobretensión, método de diferencias finitas en el dominio del tiempo, líneas de distribución

Resumen

Este artículo analiza cómo la ubicación de descargadores de sobretensión, en líneas de distribución sobre zonas montañosas, afecta las tensiones inducidas que se presentan en estas líneas a causa de rayos. Se consideraron cuatro configuraciones de terreno no plano, que son representativas de la topografía colombiana. La inclusión del terreno, el canal de la descarga, la línea de distribución y el cálculo de las tensiones inducidas, se realizó por medio del método de diferencias finitas en el dominio del tiempo en coordenadas cartesianas en tres dimensiones. Se encontró que las tensiones inducidas en terrenos no planos están entre 2 a 5 veces las que se obtienen para líneas sobre terrenos planos. En el caso de los terrenos A, C y D simulados, las tensiones inducidas superaron los umbrales de operación normales de los descargadores de sobretensión, lo que supone que aquellos ubicados en líneas de distribución en zonas de montaña tienen esfuerzos adicionales a los que se presentan en terreno plano. Sin embargo, hay una configuración (la B), donde no se superan dichos umbrales.

Biografía del autor/a

Edison Soto, *, Universidad Industrial de Santander, Colombia

PhD en Ingeniería, Escuela de Ingeniería Eléctrica, Electrónica y de Telecomunicaciones, Universidad Industrial de Santander, Bucaramanga-Colombia, easotor@uis.edu.co
*Autor de correspondencia

Daniel Martínez, Universidad Industrial de Santander, Colombia

Ingeniero Eléctrico, Escuela de Ingeniería Eléctrica, Electrónica y de Telecomunicaciones, Universidad Industrial de Santander, Bucaramanga-Colombia, daalmago21@gmail.com

Diego Verdugo, Universidad Industrial de Santander

Ingeniero Eléctrico, Escuela de Ingeniería Eléctrica, Electrónica y de Telecomunicaciones, Universidad Industrial de Santander, Bucaramanga-Colombia, diegover92@hotmail.com

Referencias bibliográficas

M. Paolone, F. Rachidi-Haeri, and C. A. Nucci, “IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines,” IEEE Std 1410-2004 (Revision IEEE Std 1410-1997), 2010.

A. Borghetti, C. A. Nucci, and M. Paolone, “An Improved Procedure for the Assessment of Overhead Line Indirect Lightning Performance and Its Comparison with the IEEE Std. 1410 Method,” IEEE Trans. Power Deliv., vol. 22, no. 1, pp. 684–692, Jan. 2007. https://doi.org/10.1109/TPWRD.2006.881463.

C. A. Nucci, F. Rachidi, M. V. Ianoz, and C. Mazzetti, “Lightning-induced voltages on overhead lines,” IEEE Trans. Electromagn. Compat., vol. 35, no. 1, pp. 75–86, 1993. https://doi.org/10.1109/15.249398.

E. Pérez and H. Torres, “Advances on modeling and experimentation of lightning induced voltages on distribution lines,” 2006.

M. Paolone et al., “Lightning Electromagnetic Field Coupling to Overhead Lines: Theory, Numerical Simulations, and Experimental Validation,” IEEE Trans. Electromagn. Compat., vol. 51, no. 3, pp. 532–547, Aug. 2009. https://doi.org/10.1109/TEMC.2009.2025958.

E. Soto and E. Pérez, “Implementation of an analytical formulation for LEMP to assess the lightning performance of a distribution line,” TecnoLógicas, vol. 21, no. 42, pp. 51–62, May. 2018. https://doi.org/10.22430/22565337.778.

E. Soto, E. Perez, and J. Herrera, “Electromagnetic Field Due to Lightning Striking on Top of a Cone-Shaped Mountain Using the FDTD,” IEEE Trans. Electromagn. Compat., vol. 56, no. 5, pp. 1112–1120, Oct. 2014. https://doi.org/10.1109/TEMC.2014.2301138.

D. Li et al., “On Lightning Electromagnetic Field Propagation Along an Irregular Terrain,” IEEE Trans. Electromagn. Compat., vol. 58, no. 1, pp. 161–171, Feb. 2016. https://doi.org/10.1109/TEMC.2015.2483018.

E. Soto, E. Perez, and C. Younes, “Influence of non-flat terrain on lightning induced voltages on distribution networks,” Electr. Power Syst. Res., vol. 113, pp. 115–120, Aug. 2014. https://doi.org/10.1016/j.epsr.2014.02.034.

E. Soto, “Lightning induced voltages study on overhead distribution networks placed over non-flat at terrains,” Universidad Nacional de Colombia, 2014.

R. E. J. Mejía, “Lightning induced voltages on overhead lines above non-uniform and non- homogeneous ground,” Universidad Nacional de Colombia, 2014.

S. Yokoyama, “Distribution Surge Arrester Behavior Due to Lightning Induced Voltages,” IEEE Trans. Power Deliv., vol. 1, no. 1, pp. 171–178, 1986. https://doi.org/10.1109/TPWRD.1986.4307904.

M. Paolone, C. A. Nucci, E. Petrache, and F. Rachidi, “Mitigation of Lightning-Induced Overvoltages in Medium Voltage Distribution Lines by Means of Periodical Grounding of Shielding Wires and of Surge Arresters: Modeling and Experimental Validation,” IEEE Trans. Power Deliv., vol. 19, no. 1, pp. 423–431, Jan. 2004. https://doi.org/10.1109/TPWRD.2003.820196.

M. A. Uman, D. K. McLain, and E. P. Krider, “The electromagnetic radiation from a finite antenna,” Am. J. Phys., vol. 43, no. 1, pp. 33–38, Jan. 1975. https://doi.org/10.1119/1.10027.

K. S. Yee and J. S. Chen, “The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell’s equations,” IEEE Trans. Antennas Propag., vol. 45, no. 3, pp. 354–363, Mar. 1997. https://doi.org/10.1109/8.558651.

A. Z. Elsherbeni and V. Demir, The Finite-Difference Time-Domain in Electromagnetics, Har/Cdr. Institution of Engineering and Technology, 2015. https://doi.org/10.1049/SBEW514E.

F. Heidler, J. M. Cvetic, and B. V. Stanic, “Calculation of lightning current parameters,” IEEE Trans. Power Deliv., vol. 14, no. 2, pp. 399–404, Apr. 1999. https://doi.org/10.1109/61.754080.

T. Noda and S. Yokoyama, “Thin wire representation in finite difference time domain surge simulation,” IEEE Trans. Power Deliv., vol. 17, no. 3, pp. 840–847, Jul.2002. https://doi.org/10.1109/TPWRD.2002.1022813.

G. Lin, S. Lu, and J. Liu, “Transmitting boundary for transient analysis of wave propagation in layered media formulated based on acceleration unit-impulse response,” Soil Dyn. Earthq. Eng., vol. 90, no. 10, pp. 494–509, Nov. 2016. https://doi.org/10.1016/j.soildyn.2016.09.021.

A. Tatematsu and T. Noda, “Three-Dimensional FDTD Calculation of Lightning-Induced Voltages on a Multiphase Distribution Line With the Lightning Arresters and an Overhead Shielding Wire,” IEEE Trans. Electromagn. Compat., vol. 56, no. 1, pp. 159–167, Feb. 2014. https://doi.org/10.1109/TEMC.2013.2272652.

SIEMENS, “Descargadores de sobretensión de media tensión 3EK4 con envolvente de Silicona,” Siemens AG, Erlangen, Alemania, 2010.

G. E. publicas de Medellín, “Especificaciones técnicas para descargadores de sobretensiones DPS en media tensión,” 2015.

E. Pérez and E. Soto, “Yaluk Draw: Software especializado para análisis del desempeño de líneas de distribución ante impacto de rayos,” pp. 1–8, 2010.

E. Pérez and E. Soto, “Yaluk Draw: Software especializado para análisis del desempeño de líneas de distribución ante impacto de rayos. Avances en Ingeniería Eléctrica,” Av. en Ing. Eléctrica, vol. 4, no. 1, pp. 1–8, 2013.

Cómo citar
[1]
E. Soto, D. Martínez, y D. Verdugo, «Comportamiento de descargadores de sobretensión ante tensiones inducidas por rayos sobre líneas de distribución ubicadas en zona montañosa», TecnoL., vol. 22, n.º 45, pp. 155–171, may 2019.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2019-05-15
Sección
Artículos de investigación

Métricas

Crossref Cited-by logo