Application of CE QUAL-W2 Model: An Approach to the Thermal Structure in the Miguel Martínez Isaza reservoir, Concordia, Antioquia, Colombia

Keywords: CE-QUAL-W2, hydrodynamic, water management, reservoir, climate change, statistical analysis


Hydrodynamic modelling of temperature is a tool that contributes to the management of reservoirs because it is possible to create scenarios with different conditions to predict the behavior facing the meteorological changes and the mixing processes. This work seeks to contribute elements of analysis to the functioning and identification of the external factors that dominate the thermal dynamics of a tropical reservoir of mountain. The temperature and the water level were registered in three places of the reservoir, during three campaigns of sampling. In addition, we measured the inflows and outflows to the reservoir and analyzed the climatic historical records. With this information the two-dimensional model CE QUAL-W2 archives was build, in order to simulate 3 climatic periods (dry, transition and wet) and one where El Niño is included. It is clearly demonstrated that Santa Mónica creek has a greater influence in the water extraction. The external factors like the increase of the water extraction and the climatic scenarios influence the temperature and availability of the reservoir, being El Niño scenario the most critical, where the reservoir approximately increases its temperature 3°C and the level of the water diminishes a meter. The reservoir is increasingly susceptible to the shortage of supplies and the decrease of quality in the scenes of drought with the increase of the resource demand. The model is a useful management tool of the reservoir for the future scenarios of climate change.

Author Biographies

Mateo Parra-Cuadros*, Universidad de Antioquia, Colombia

Ingeniero Ambiental, Grupo GeoLimna, Facultad de Ingeniería, Escuela Ambiental, Universidad de Antioquia, Medellín-Colombia,

Nora E. Villegas-Jiménez, Universidad de Antioquia, Colombia

M.Sc. en Ingeniería Ambiental, Grupo GAIA, Facultad de Ingeniería, Escuela Ambiental, Universidad de Antioquia, Medellín-Colombia,

Esnedy Hernández-Atilano , Universidad de Antioquia, Colombia

PhD en Biología, Grupo GeoLimna, Facultad de Ingeniería, Escuela Ambiental, Universidad de Antioquia, Medellín-Colombia,

Néstor J. Aguirre-Ramírez, Universidad de Antioquia, Colombia

PhD en Ciencias Naturales, Grupo GeoLimna, Facultad de Ingeniería, Escuela Ambiental, Universidad de Antioquia, Medellín-Colombia,

Fabio de J. Vélez-Macías, Universidad de Antioquia, Colombia

PhD en Geografía Énfasis en Ordenamiento Territorial, Grupo GeoLimna, Facultad de Ingeniería, Escuela Ambiental, Universidad de Antioquia, Medellín, Colombia,


B. Jiménez and J. G. Tundisi, “Diagnóstico del Agua en las Américas,” in Red Interamericana de Academias de Ciencias (IANAS), Foro Consultivo Científico y Tecnológico (FCCyT), 2012.

Instituto de Hidrología Meteorología y Estudios Ambientales, Estudio Nacional del Agua 2014. Bogotá, D.C.: IDEAM, 2015.

Organización Panamericana de la Salud, “Informe Regional Sobre la Evaluación 2000 en la Región de las Américas. Agua Potable y Saneamiento, Estado Actual y Perspectivas,” Washington D.C., 2001.

Ministerio de Ambiente y Desarrollo Sostenible and ANDESCO, “Pacto por el Uso Eficiente y Ahorro del Agua,” Bogotá, D.C., 2013.

Alcaldía de Concordia, “Esquema de Ordenamiento Territorial Concordia Antioquia 2001,” 2001.

Dueñas, C. "Marco normativo vigente ante el riesgo de inundaciones. "Jornadas Parlamentarias sobre prevención de riesgos relacionados con el agua: VI-La protección civil ante el riesgo de inundaciones (1997).

J. Prats Rodríguez, R. Morales Baquero, J. Dolz Ripollés, and J. Armenol Baquero, “Aportaciones de la limnología a la gestión de embalses,” Ing. del agua, vol. 18, no. 1, p. 83- 97, Aug. 2014.

R. Margalef, Limnología. Barcelona: Omega, 1983.

T. M. Cole and S. A. Wells, “CE-QUAL-W2: A two-dimensional, laterally averaged, Hydrodynamic and Water Quality Model, Version 4.1,” Portland, 2016.

T. M. Cole and S. A. Wells, Section: “CE-QUAL-W2: Application by country,” Portland State University, 2018.

A. Marín Ramírez, “Corrientes de Densidad en el Embalse Amaní y su Influencia en la Estructura Térmica y la Calidad del agua,” Thesis, Universidad Nacional de Colombia, 2015.

S. M. Silva Arroyave, “Evaluación de la calidad del agua del futuro Embalse Porce III por la influencia de la descarga del Embalse Porce II: Modelo de simulación de calidad del agua del futuro embalse Porce III,” Rev. Ing. Univ. Medellín, vol. 7, no. 13, pp. 21–37, 2008.

Ministerio de Ambiente y Desarrollo Sostenible, Resolución No. 0838 del 5 de octubre de 1999: Estudios previos Hidroeléctrica Urra I, no. 0838. 2000, p. 46.

Consejo Municipal de Concordia, “Plan de Desarrollo Concordia 2016-2019,” 2016.

IDEAM, “Datos meteorológicos ‘Estación Concordia.’” IDEAM, Bogotá, Colombia, 2018.

E. Eccel, “What we can ask to hourly temperature recording. Part I: Statistical vs. meteorological meaning of minimum temperature,” Ital. J. Agrometeorol., no. 2, pp. 41–43, 2010.

D. Spano, P. Duce, R. L. Snyder, and C. Cesaraccio, “An improved model for determining degree-day values from daily temperature data,” Int. J. Biometeorol., vol. 45, no. 4, pp. 161–169, Nov. 2001.

D. Quan, C. Xing, C. Tiexi, and C. Xing-Wu, “Relationship between extremes of precipitation and discharge in the Huaihe River Basin,” J. Nanjing Univ. (Natural Sci), vol. 45, no. 6, pp. 790–801, 2009.

L. Prathumratana, S. Sthiannopkao, and K. W. Kim, “The relationship of climatic and hydrological parameters to surface water quality in the lower Mekong River,” Environ. Int., vol. 34, no. 6, pp. 860–866, Aug. 2008.

Z. Zhang, X. Chen, C.-Y. Xu, L. Yuan, B. Yong, and S. Yan, “Evaluating the non-stationary relationship between precipitation and streamflow in nine major basins of China during the past 50 years,” J. Hydrol., vol. 409, no. 1–2, pp. 81–93, Oct. 2011.

ESRI, “ArcGIS Desktop - Program,” 2018.

“Notepad++,” 2018.

S. W. Chung and J. K. Oh, “Calibration of CE-QUAL-W2 for a monomictic reservoir in a monsoon climate area,” Water Sci. Technol., vol. 54, no. 11–12, pp. 29–37, Dec. 2006.

Y. Kim and B. Kim, “Application of a 2-Dimensional Water Quality Model (CE-QUAL-W2) to the Turbidity Interflow in a Deep Reservoir (Lake Soyang, Korea),” Lake Reserv. Manag., vol. 22, no. 3, pp. 213–222, Jan. 2006.

M. Azmi and N. Heidarzadeh, “Dynamic modelling of integrated water resources quality management,” Proc. Inst. Civ. Eng. - Water Manag., vol. 166, no. 7, pp. 357–366, Jul. 2013.

D. S. Wilks, Statistical methods in the atmospheric sciences, 3rd ed., vol. 100. Academic press, 2011.

NOAA’s Climate Prediction Center, “Cold and Warm Episodes by Season,” 2017.

C. Montes, “La incertidumbre climática y el dilema energético colombiano,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 42, no. 165, p. 392-401, Dec. 2018.

G. R. Pérez and J. J. R. Restrepo, Fundamentos de limnologia neotropical, 2nd ed., vol. 15. Universidad de Antioquia, 2008.

J. G. Tundisi, T. Matsumura-Tundisi, and M. C. Calijuri, “Limnology and management of reservoirs in Brazil,” in Comparative Reservoir Limnology and Water Quality Management, Dordrecht: Springer Netherlands, 1993. pp. 25–55.

J. Armengol, J. J. Rodríguez, J. C. García, J. Ordoñez, and R. Marcé, “La gestión de los embalses en relación a la calidad del agua en condiciones de sequía extrema,” Ing. del agua, vol. 16, no. 4, pp. 285–294, Sep. 2009.

How to Cite
Parra-Cuadros, M., Villegas-Jiménez, N. E., Hernández-Atilano , E., Aguirre-Ramírez, N. J., & Vélez-Macías, F. de J. (2019). Application of CE QUAL-W2 Model: An Approach to the Thermal Structure in the Miguel Martínez Isaza reservoir, Concordia, Antioquia, Colombia. TecnoLógicas, 22(46), 99-113.


Download data is not yet available.
Research Papers