Simple theoretical proposal of the dependence of the deGennes extrapolation parameter with the surface temperature of a superconducting sample

Keywords: Time-dependent Ginzburg–Landau equations, deGennes parameter, Superconductor, Mesoscopic, Magnetization

Abstract

The Time-dependent Ginzburg–Landau model (TDGLM) is a robust tool widely used to analyze the magnetization of the single-vortex state of a mesoscopic superconducting sample in presence of a magnetic field. The algorithm implemented in this work is applied to a square geometry surrounded by different kinds of materials simulated by deGennes extrapolation length . The inside of the sample remains at constant temperature , while its boundary remains at temperature . This temperature variation in the sample can be generated by a continuous laser wave injected into all the internal points, except for a thin surface layer in the boundary of the material. We found that the b value at , which mimics the magnetization curve for a corresponding , presents a linear dependence with the temperature. Therefore, although within the domain of validity TDGLM the parameter  is to be considered temperature-independent in the vicinity of the bulk critical temperature and that  depends on the density of states near the surface, we propose a simple dependence of using a TDGLM.

Downloads

Download data is not yet available.

Author Biographies

José José Barba-Ortega, *, Universidad Nacional de Colombia, Colombia

PhD en Física, Departamento de Física, Universidad Nacional de Colombia, Bogotá-Colombia, jjbarbao@unal.edu.co
*Corresponding author

Jesús D. González, Universidad del Magdalena, Colombia

PhD en Física, Grupo en Teoría de la Materia Condensada, Universidad del Magdalena, Santa Marta-Colombia, jgonzaleza@unimagdalena.edu.co

Miryam Rincón-Joya, Universidad Nacional de Colombia, Colombia

PhD en Física, Departamento de Física, Universidad Nacional de Colombia, Bogotá-Colombia, mrinconj@unal.edu.co

References

P. G. De Gennes, Superconductivity of Metals and Alloys, 1st ed. New York: Advanced Books Classics, 1966.

M. Tinkham, Introduction to Superconductivity, 2nd ed. New York: McGraw-Hill Book Co., 1996.

J. Barba-Ortega, E. Sardella, and R. Zadorosny, “Influence of the deGennes extrapolation parameter on the resistive state of a superconducting strip,” Phys. Lett. A, vol. 382, no. 4, pp. 215–219, Jan. 2018. https://doi.org/10.1016/j.physleta.2017.11.010.

J. Barba-Ortega, C. C. de S. Silva, and J. A. Aguiar, “Superconducting slab in contact with thin superconducting layer at higher critical temperature,” Phys. C Supercond., vol. 469, no. 14, pp. 852–856, Jul. 2009. https://doi.org/10.1016/j.physc.2009.06.001.

J. Barba-Ortega, E. Sardella, and J. A. Aguiar, “Superconducting boundary conditions for mesoscopic circular samples,” Supercond. Sci. Technol., vol. 24, no. 1, p. 015001, Jan. 2010. https://doi.org/10.1088/0953-2048/24/1/015001.

B. J. Baelus, B. Partoens, and F. M. Peeters, “One-dimensional modulation of the superconducting boundary condition for thin superconducting films,” Phys. Rev. B, vol. 73, no. 21, p. 212503, Jun. 2006. https://doi.org/10.1103/PhysRevB.73.212503.

M. M. Doria, A. R. de C. Romaguera, and F. M. Peeters, “Effect of the boundary condition on the vortex patterns in mesoscopic three-dimensional superconductors: Disk and sphere,” Phys. Rev. B, vol. 75, no. 6, p. 064505, Feb. 2007. https://doi.org/10.1103/PhysRevB.75.064505.

H. J. Fink, S. B. Haley, C. V. Giuraniuc, V. F. Kozhevnikov, and J. O. Indekeu, “Boundary conditions, dimensionality, topology and size dependence of the superconducting transition temperature,” Mol. Phys., vol. 103, no. 21–23, pp. 2969–2978, Nov. 2005. https://doi.org/10.1080/00268970500226189.

M. Salluzzo et al., “Indirect Electric Field Doping of the CuO2 Planes of the Cuprate NdBa2 Cu3 O7 Superconductor,” Phys. Rev. Lett., vol. 100, no. 5, p. 056810, Feb. 2008. https://doi.org/10.1103/PhysRevLett.100.056810.

A. S. Dhoot, S. C. Wimbush, T. Benseman, J. L. MacManus-Driscoll, J. R. Cooper, and R. H. Friend, “Increased Tc in Electrolyte-Gated Cuprates,” Adv. Mater., vol. 22, no. 23, pp. 2529–2533, May. 2010. https://doi.org/10.1002/adma.200904024.

X. Leng, J. Garcia-Barriocanal, S. Bose, Y. Lee, and A. M. Goldman, “Electrostatic Control of the Evolution from a Superconducting Phase to an Insulating Phase in Ultrathin YBa2 Cu3 O7-x Films,” Phys. Rev. Lett., vol. 107, no. 2, p. 027001, Jul. 2011. https://doi.org/10.1103/PhysRevLett.107.027001.

W. D. Gropp, H. G. Kaper, G. K. Leaf, D. M. Levine, M. Palumbo, and V. M. Vinokur, “Numerical Simulation of Vortex Dynamics in Type-II Superconductors,” J. Comput. Phys., vol. 123, no. 2, pp. 254–266, Feb. 1996. https://doi.org/10.1006/jcph.1996.0022.

G. C. Buscaglia, C. Bolech, and A. Lpez, Connectivity and Superconductivity, vol. 62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. https://doi.org/10.1007/3-540-44532-3.

J. Berger, “Time-dependent Ginzburg–Landau equations with charged boundaries,” J. Math. Phys., vol. 46, no. 9, p. 095106, Sep. 2005. https://doi.org/10.1063/1.2010352.

A. Crassous et al., “Nanoscale Electrostatic Manipulation of Magnetic Flux Quanta in Ferroelectric/Superconductor BiFeO3/YBa2Cu3 O7−δ Heterostructures,” Phys. Rev. Lett., vol. 107, no. 24, p. 247002, Dec. 2011. https://doi.org/10.1103/PhysRevLett.107.247002.

M. V. Milošević and R. Geurts, “The Ginzburg–Landau theory in application,” Phys. C Supercond., vol. 470, no. 19, pp. 791–795, Oct. 2010. https://doi.org/10.1016/j.physc.2010.02.056.

V. Moshchalkov, R. Woerdenweber, and W. Lang, Nanoscience and Engineering in Superconductivity. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. https://doi.org/10.1007/978-3-642-15137-8.

C. Poole, H. Farach, and R. Creswick, Handbook of Superconductivity, 1st ed. New York: Academic Press, 2000.

J. Barba-Ortega and M. R. Joya, “Configuración de vórtices en películas finas: Teoría Ginzburg-Landau no lineal,” TecnoLógicas, no. 27, pp. 89–102, July 2011. Dec. 2011.https://doi.org/10.22430/22565337.6.

J. Barba-Ortega, E. D. Valbuena-Nino, and M. Rincón-Joya, “Transport phenomena in superconductors: kinematic vortex,” Iteckne, vol. 14, no. 1, pp. 11–16, Mar. 2017. https://doi.org/10.15332/iteckne.v14i1.1625

F. Durán-Florez, M. Rincón-Joya, and J. Barba-Ortega, “Perfil de súper-corrientes en una lámina de Al a campo magnético cero,” Respuestas, vol. 21, no. 2, pp. 6–12, Jan. 2016. https://doi.org/10.22463/0122820X.769

J. Barba-Ortega and M. Rincón-Joya, “Nucleación de vórtices y antivórtices en películas superconductoras con nanoestructuras magnéticas,” Respuestas, vol. 16, no. 1, pp. 45–49, Jan. 2011. https://doi.org/doi.org/10.22463/0122820X.104.

E. C. S. Duarte, E. Sardella, W. A. Ortiz, and R. Zadorosny, “Dynamics and heat diffusion of Abrikosov’s vortex-antivortex pairs during an annihilation process,” Journak Phys. Condens. Matter, vol. 29, no. 40, p. 405605, 2017. https://doi.org/10.1088/1361-648X/aa81e6

Published
2019-05-15
How to Cite
Barba-Ortega, J. J., González, J. D., & Rincón-Joya, M. (2019). Simple theoretical proposal of the dependence of the deGennes extrapolation parameter with the surface temperature of a superconducting sample. TecnoLógicas, 22(45), 1-7. https://doi.org/10.22430/22565337.1301
Section
Research Papers