Plasma Spray Parameters of TiO2 Targets Used in Magnetron Sputtering

Keywords: Atmospheric Plasma Spray, target manufacturing, sputtering, porosity, rutile

Abstract

The synthesis of thin films by sputtering requires the use of targets, which act as materials from which the coatings are made. This work is focused on the implementation of Atmospheric Plasma Spray (APS) for manufacturing TiO2 targets that can later be used in the deposition of TiO2 coatings by magnetron sputtering. Three commercial TiO2 powders, produced by Oerlikon Metco, were sprayed using different spray parameters to evaluate their effect on the microstructure (percentage of pores and cracks on the cross section) of the obtained TiO2 targets. The targets were characterized by Scanning Electron Microscopy (SEM) and image processing and used in sputtering deposition tests to estimate the deposition rate. The results enabled us to identify the variables with the most significant effect on the targets’ microstructure (in a decreasing order in terms of magnitude of the effect): ratio of plasma generating gases, stand-off distance, carrier gas flow rate, current in the electric arc, and particle size distribution of the raw material. The percentages of microstructural defects found during the tests ranged between 0.41 ± 0.30 % and 6.80 ± 2.03 %, which demonstrates the importance of controlling spray parameters in the manufacture of targets by this technique.

Author Biographies

Daniela Jaramillo-Raquejo*, Universidad EAFIT, Colombia

MSc. en Física Aplicada, Grupo GEMA, Universidad EAFIT, Medellín-Colombia, djaram13@eafit.edu.co

Claudia Constanza Palacio-Espinosa, Universidad EAFIT, Colombia

PhD. en Ciencias Materiales Cerámicos y Tratamiento de superficie, Grupo GEMA, Universidad EAFIT, Medellín-Colombia, cpalac12@eafit.edu.co

Hélène Ageorges, University of Limoges, Francia

PhD. en Ingeniería de Procesos de Plasma, IRCER, UMR CNRS 7315, University of Limoges, Limoges-France, helene.ageorges@unilim.fr

References

K. Yoshikawa, Y. Yoneda, y K. Koide, “Spray formed aluminum alloys for sputtering targets,” Powder Metall., vol. 43, no. 3, pp. 198, 2000. Disponible en: https://search.proquest.com/openview/f1c1914da5d60226ec2f67b4763705b4/1?pq-origsite=gscholar&cbl=38197

Q. Ling et al., “The microstructure, mechanical and electrical properties of Niobium pentoxide-doped Titanium oxide ceramic targets,”en IOP Conf. Ser. Mater. Sci. Eng., vol. 182, pp. 1-7, Qingdao. 2017. https://doi.org/10.1088/1757-899X/182/1/012005

J. J. Li, L. F. Hu, F. Z. Li, M. S. Li, y Y. C. Zhou, “Variation of microstructure and composition of the Cr2AlC coating prepared by sputtering at 370 and 500°C,” Surf. Coatings Technol., vol. 204, no. 23, pp. 3838–3845, Aug. 2010. https://doi.org/10.1016/j.surfcoat.2010.04.067

G. Haacke, W. E. Mealmaker, y L. A. Siegel, “Sputter deposition and characterization of Cd2SnO4 films,” Thin Solid Films, vol. 55, no. 1, pp. 67–81, Nov. 1978. https://doi.org/10.1016/0040-6090(78)90075-5

B. R. Braeckman et al., “High entropy alloy thin films deposited by magnetron sputtering of powder targets,” Thin Solid Films, vol. 580, no.1, pp. 71–76, Apr. 2015. https://doi.org/10.1016/j.tsf.2015.02.070

A. F. Jankowski, J. P. Hayes, D. M. Makowiecki, y M. A. McKernan, “Formation of cubic boron nitride by the reactive sputter deposition of boron,” Thin Solid Films, vol. 308–309, pp. 94–100, Oct. 1997. https://doi.org/10.1016/S0040-6090(97)00395-7

K. Kutschej, P. H. Mayrhofer, M. Kathrein, P. Polcik, y C. Mitterer, “A new low-friction concept for Ti1−xAlxN based coatings in high-temperature applications,” Surf. Coatings Technol., vol. 188–189, pp. 358–363, Nov. 2004. https://doi.org/10.1016/j.surfcoat.2004.08.022

D. Zhong, E. Sutter, J. . Moore, G. G. . Mustoe, E. . Levashov, y J. Disam, “Mechanical properties of Ti–B–C–N coatings deposited by magnetron sputtering,” Thin Solid Films, vol. 398–399, pp. 320–325, Nov. 2001. https://doi.org/10.1016/S0040-6090(01)01344-X

D. V. Shtansky et al., “Structure and properties of CaO- and ZrO2-doped TiCxNy coatings for biomedical applications,” Surf. Coatings Technol., vol. 182, no. 1, pp. 101–111, Apr. 2004. https://doi.org/10.1016/S0257-8972(03)00813-2

M. Müller, R. B. Heimann, F. Gitzhofer, M. I. Boulos, and K. Schwarz, “Radio frequency plasma processing to produce chromium sputter targets,” J. Therm. Spray Technol., vol. 9, pp. 488–493, Dec. 2000. https://doi.org/10.1007/BF02608551

W. Shao, R. Ma, y B. Liu, “Fabrication and properties of ZAO powder, sputtering target materials and the related films,” J. Univ. Sci. Technol. Beijing, Miner. Metall. Mater., vol. 13, no. 4, pp. 346–349, Aug. 2006. https://doi.org/10.1016/S1005-8850(06)60071-6

N. Neves et al., “Sintering Behavior of Nano- and Micro-Sized ZnO Powder Targets for rf Magnetron Sputtering Applications,” J. Am. Ceram. Soc., vol. 95, no. 1, pp. 204–210, Jan. 2012. https://doi.org/10.1111/j.1551-2916.2011.04874.x

J. L. H. Chau, Y.-H. Chou, S.-H. Wang, and C.-C. Yang, “Preparation of Ag-AZO Nanocomposite Powder Compact for RF Magnetron Sputtering Target Application,” Int. J. Appl. Ceram. Technol., vol. 10, no. 6, pp. 879–886, Nov. 2013. https://doi.org/10.1111/ijac.12017

D. Fasquelle et al., “Lanthanum titanate ceramics: Electrical characterizations in large temperature and frequency ranges,” J. Eur. Ceram. Soc., vol. 25, no. 12, pp. 2085–2088, May. 2005. https://doi.org/10.1016/j.jeurceramsoc.2005.03.013

Compañía proveedora de equipos y asesorías para la manufactura de Materiales, “The library of manufacturing”, 2016. Disponible en: http://www.thelibraryofmanufacturing.com/

Plasmaterials Inc., “Sputtering Targets”, 2018. Disponible en: https://www.plasmaterials.com/products/sputtering-targets/#em

R. Bamola, “Thermal spray applications in the solar industry,” Adv. Mater. Process., vol. 168, no. 5, pp. 48–50, May. 2010. Disponible en: https://www.researchgate.net/publication/294391312_Thermal_Spray_Applications_in_the_Solar_Industry

Glass Canada magazine, “Thermal spray as a sputter target production method New trends in rotatable target manufacturing for coating applications on glass,” 2009. Disponible en: https://www.glasscanadamag.com/thermal-spray-as-a-sputter-target-production-method-1124/

P. L. Fauchais, J. V. R. Heberlein, y M. I. Boulos, Thermal Spray Fundamentals. Springer US, 2014. https://doi.org/10.1007/978-0-387-68991-3

R. A. Powell y S. Rossnagel, “Chapter 9 PVD materials and processes,” in Thin Films, vol. 26, A. Press, Ed. Academic Press, 1999. pp. 285–352. https://doi.org/10.1016/S1079-4050(99)80012-X

F. Craciun, P. Verardi, M. Dinescu, C. Galassi, y A. Costa, “Growth of piezoelectric thin films with fine grain microstructure by high energy pulsed laser deposition,” Sensors Actuators A Phys., vol. 74, no. 1–3, pp. 35–40, Apr. 1999. https://doi.org/10.1016/S0924-4247(98)00341-0

Oerlikon Metco, “Material Product Data Sheet Pure Titanium Thermal Spray Powders,” pp. 1-7, 2019. Disponible en: https://www.oerlikon.com/ecoma/files/DSM-0222.0_Ti-Ti_Alloys.pdf?download=1

C. Palacio-Espinosa, “Étude du comportement élastique et plastique de revêtements élaborés par projection thermique : Mise au point d’une méthode de caractérisation des propriétés mécaniques par perforation et comparaison avec les propriétés obtenues par indentation,” (Tesis Doctoral) Université de Limoges, Limoges, 2016. Disponible en: https://pdfs.semanticscholar.org/573e/695c4b1212d2176990caccc7fc3a2f4d5cda.pdf?_ga=2.136668404.530889460.1580223040-157729077.1571259895

S. Garcia-Segura, S. Dosta, J. M. Guilemany, y E. Brillas, “Solar photoelectrocatalytic degradation of Acid Orange 7 azo dye using a highly stable TiO2 photoanode synthesized by atmospheric plasma spray,” Appl. Catal. B Environ., vol. 132–133, pp. 142–150, Mar. 2013. https://doi.org/10.1016/j.apcatb.2012.11.037

M. Vicent, E. Sánchez, A. Moreno, y R. Moreno, “Preparation of high solids content nano-titania suspensions to obtain spray-dried nanostructured powders for atmospheric plasma spraying,” J. Eur. Ceram. Soc., vol. 32, no. 1, pp. 185–194, Jan. 2012. https://doi.org/10.1016/j.jeurceramsoc.2011.08.007

Y.-F. Lin, K.-L. Tung, Y.-S. Tzeng, J.-H. Chen, y K.-S. Chang, “Rapid atmospheric plasma spray coating preparation and photocatalytic activity of macroporous titania nanocrystalline membranes,” J. Memb. Sci., vol. 389, pp. 83–90, Feb. 2012. https://doi.org/10.1016/j.memsci.2011.10.018

M. Bozorgtabar, M. Rahimipour, M. Salehi, y M. Jafarpour, “Structure and photocatalytic activity of TiO2 coatings deposited by atmospheric plasma spraying,” Surf. Coatings Technol., vol. 205, no. 2, pp. S229–S231, Jul. 2011. https://doi.org/10.1016/j.surfcoat.2011.03.045

M. Zakeri, E. Hasani, y M. Tamizifar, “Mechanical properties of TiO2-hydroxyapatite nanostructured coatings on Ti-6Al-4V substrates by APS method,” Int. J. Miner. Metall. Mater., vol. 20, no. 4, pp. 397-402, Apr. 2013. https://doi.org/10.1007/s12613-013-0742-3

ASTM International, “Standard Guide for Metallographic Preparation of Thermal Sprayed Coatings ASTM E1920 - 03(2008),” 2008. Disponible en: http://209.195.157.233/Standards/HISTORICAL/E1920-03R08.htm

ASTM International, “E2109-01 Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings”, 2014. Disponible en: https://www.astm.org/Standards/E2109.htm

R. Cardona y F. Vargas, “Desarrollo de recubrimientos a partir de silicato de zirconio de origen mineral mediante proyección térmica por llama oxiacetilénica para aplicación sobre ladrillos refractarios,” TecnoLógicas, vol. 22, no. 44, pp. 97-111, Jan. 2019. https://doi.org/10.22430/22565337.1185

D. García-Muñoz y F. Vargas-Galvis, “Aislamiento térmico de tuberías de acero que transportan fluidos calientes a partir de recubrimientos elaborados mediante proyección térmica,” TecnoLógicas, vol. 20, no. 40, pp. 53–69, Sep. 2017. https://doi.org/10.22430/22565337.705

M. Araque-Pabón, G. Peña-Rodríguez, y F. Vargas-Galvis, “Desempeño mecánico y tribológico de baldosas cerámicas de arcilla roja recubiertas por proyección térmica a partir de alúmina,” TecnoLógicas, vol. 18, no. 35, pp. 125-135, Aug. 2015. https://doi.org/10.22430/22565337.194

C. C. Palacio, H. Ageorges, F. Vargas, y A. F. Díaz, “Effect of the mechanical properties on drilling resistance of Al2O3–TiO2 coatings manufactured by atmospheric plasma spraying,” Surf. Coatings Technol., vol. 220, pp. 144–148, Apr. 2013. https://doi.org/10.1016/j.surfcoat.2012.10.075

C. Monterrubio-Badillo, H. Ageorges, T. Chartier, J. F. Coudert, y P. Fauchais, “Preparation of LaMnO3 perovskite thin films by suspension plasma spraying for SOFC cathodes,” Surf. Coatings Technol., vol. 200, no. 12–13, pp. 3743–3756, Mar. 2006. https://doi.org/10.1016/j.surfcoat.2005.01.002

R. S. Lima y B. R. Marple, “From APS to HVOF spraying of conventional and nanostructured titania feedstock powders : a study on the enhancement of the mechanical properties,” Surf. Coat. Technol., vol. 200, no. 11, pp. 3428–3437, Mar. 2006. https://doi.org/10.1016/j.surfcoat.2004.10.137

How to Cite
Jaramillo-Raquejo, D., Palacio-Espinosa, C. C., & Ageorges, H. (2020). Plasma Spray Parameters of TiO2 Targets Used in Magnetron Sputtering. TecnoLógicas, 23(47), 137-157. https://doi.org/10.22430/22565337.1320

Downloads

Download data is not yet available.
Published
2020-01-30
Section
Research Papers