Designing Pedagogic Conversational Agents through Data Analysis

Keywords: Pedagogic Conversational Agent, Learning Analytics, Knowledge Discovery in Databases, Learning Design


Pedagogical Conversational Agents are systems or programs that represent a resource and a means of learning for students, making the teaching and learning process more enjoyable. The aim is to improve the teaching-learning process. Currently, there are many agents being implemented in multiple knowledge domains. In our previous work, a methodology for designing agents was published, the result of which was Agent Dr. Roland, the first conversational agent for Early Childhood Education. In this paper, we propose the use of Data Analytics techniques to improve the design of the agent. Two new techniques are applied: KDDIAE, application of (Knowledge Discovery in Databases) to the Data of the Interaction between Agents and Students – Estudiantes in Spanish, and BIDAE (use of Data Analytics to obtain information of agents and students). The use of KDDIAE and BIDAE proves the existence of a fruitful relationship between learning analytics and learning design. Some samples of rules related to learning analytics and design are the following: (Learning Analytics) Children who initially do not know how to solve the exercise, after receiving help, are able to understand  and solve it à (Learning Design) An agent for small children should be able to provide help. In addition, help should be entertaining and tailored to their characteristics because it is a resource that children actually use; or (Learning Analytics) Younger children use more voice interaction à (Learning Design) An agent interface for young children must incorporate voice commands. A complete list of rules related to learning analytics and design is provided for any researcher interested in PCA design. 72 children were able to use the new Dr. Roland after applying the learning analytics-design rules. They reported a 100 % satisfaction as they all enjoyed interacting with the agent.

Author Biographies

Diana Pérez-Marín*, Universidad Rey Juan Carlos, España

PhD. en Ingeniería de computación, Centro de inteligencia artificial, Universidad Rey Juan Carlos, Madrid- España,

Silvia Tamayo-Moreno, Stratio, España

PhD. en Ingeniería en Computación, Big Data, Stratio, Madrid-España,


J. Salinas, “Innovación docente y uso de las TIC en la enseñanza universitaria,” RUSC. Univ. Knowl. Soc. J., vol. 1, no. 1, pp. 1–16, Nov. 2004.

. B. Garza González and A. G. Solís Hernández, “Uso Pedagógico de las TIC en el Aula / Pedagogical use of ICT in the classroom,” RECI Rev. Iberoam. las Ciencias Comput. e Informática, vol. 1, no. 2, pp. 1-19, Jul. 2014.

W. L. Johnson, J. W. Rickel, and James C. Lester, “Animated Pedagogical Agents: Face-to-Face Interaction in Interactive Learning Environments,” Int. J. Artif. Intell. Educ., vol. 11, pp. 47–78, 2000. Available:

N. K. Person and A. C. Graesser, “Designing AutoTutor to be an Effective Conversational Partner,” in Fourth International Conference of the Learning Sciences, Michigan, 2000, pp. 246–253. Available:

K. Theodoridou, T. Yerasimou, “Learning Spanish with ‘Laura’: The Role of an Intelligent Agent in a Spanish Language Course,” in Proceedings of ED-MEDIA 2008--World Conference on Educational Multimedia, Hypermedia & Telecommunications, Waynesville, 2008, pp. 4907–4912. Available:

K. D. Theodoridou, “Learning with Laura: Investigating the Effects of a Pedagogical Agent on Spanish Lexical Acquisition,” (Tesis Doctoral), The University of Texas at Austin, 2009. Available:

D. Pérez Marín, Uso de agentes conversacionales pedagógicos en sistemas de aprendizaje híbrido (b-learning), Actas del IV Semin. Investig. en Tecnol. la Inf., vol. 79–94, 2011. Available:

. I. Pascual Nieto, “Una metodología para gestión de la interacción entre los estudiantes, los profesores y el contenido en aplicaciones en línea de Aprendizaje Híbrido usando modelos conceptuales,”, (Tesis Doctoral) Universidad Autónoma de Madrid Escuela Politécnica Superior, Madrid, 2009. Available:

K. Leelawong and G. Biswas, “Designing Learning by Teaching Agents: The Betty's Brain System,” Int. J. Artif. Intell. Educ., vol. 18, no. 3, pp. 181–208, 2008. Available:

C. Kirkegaard, A. Gulz, and A. Silvervarg, “Introducing a Challenging Teachable Agent,” in Learning and Collaboration Technologies. Designing and Developing Novel Learning Experiences. LCT 2014, Cham: Springer, 2014. pp. 53–62.

N. Matsuda, W. W. Cohen, K. R. Koedinger, G. Stylianides, V. Keiser, and R. Raizada, “Tuning Cognitive Tutors into a Platform for Learning-by-Teaching with SimStudent Technolog,” in 1st APLEC Workshop Proceedings, 2010. Available:

N. Matsuda et al., “Cognitive anatomy of tutor learning: Lessons learned with SimStudent.,” J. Educ. Psychol., vol. 105, no. 4, pp. 1152–1163, Jan. 2013.

N. Matsuda, W. W. Cohen, and K. R. Koedinger, “Teaching the Teacher: Tutoring SimStudent Leads to More Effective Cognitive Tutor Authoring,” Int. J. Artif. Intell. Educ., vol. 25, no. 1, pp. 1–34, Mar. 2015.

L. Pareto, “A Teachable Agent Game Engaging Primary School Children to Learn Arithmetic Concepts and Reasoning,” Int. J. Artif. Intell. Educ., vol. 24, no. 3, pp. 251–283, Sep. 2014.

Z.-H. Chen, C. C. Y. Liao, T.-C. Chien, and T.-W. Chan, “Nurturing My-Pet: Promoting Effort-Making Learning Behavior by Animal Companions,” in In 16 th International Conference on Computers in Education, Nurturing, 2008, pp. 27–34. Available:

E. Reategui, E. Polonia, and L. Roland, “The role of animated pedagogical agents in scenario-based language e-learning: a case-study,” in Conference ICL2007, Villach, 2007, pp. 1–8. Available:

E. Aimeur and C. Frasson, “Analyzing a new learning strategy according to different knowledge levels,” Comput. Educ., vol. 27, no. 2, pp. 115–127, Sep. 1996.

S. Tamayo- Moreno, “Propuesta de Metodología para el Diseño e Integración en el Aula de un Agente Conversacional Pedagógico desde Educación Secundaria hasta Educación Infantil,” (Tesis Doctoral), Universidad Rey Juan Carlos de Madrid, Madrid, 2017. Available:

A. Kuz, M. Falco, L. Nahuel, and R. Giandini, “Agent SocialMetric: herramienta de asistencia al docente para determinar el clima social y la estructura del aula,” IE Comun. Rev. Iberoam. Informática Educ., no. 22, pp. 16–29, 2015. Available:

G. Veletsianos, C. Miller, and A. Doering, “Enali: A Research and Design Framework for Virtual Characters and Pedagogical Agents,” J. Educ. Comput. Res., vol. 41, no. 2, pp. 171–194, Oct. 2009.

S. van Vuuren, “Technologies that power pedagogical agents and visions for the future,” Educ. Technol., vol. 47, no. 1, pp. 4–10, 2007. Available:

M. Beyer and D. Laney, “Gartner Research,” The Importance of “Big Data”: A Definition. 2012, ID: G00235055, Available:

Y. Vasquez, “Educación basada en competencias,” Educ. Rev. Educ. nueva epoca, no. 16, p. 1, Mar. 2001. Available:

J. F. Strayer, “How learning in an inverted classroom influences cooperation, innovation and task orientation,” Learn. Environ. Res., vol. 15, no. 2, pp. 171–193, Jul. 2012.

M. Area Moreira and C. S. González González, “De la enseñanza con libros de texto al aprendizaje en espacios online gamificados,” Educ. Siglo XXI, vol. 33, no. 3, pp. 15-37, Nov. 2015.

A. P. Dempster, N. M. Laird, and B. Rubin, “Maximum Likelihood from Incomplete Data via the EM Algorithm,” J. R. Stat. Soc. Ser. B, vol. 39, no. 1, pp. 1–38, 1977. Available:

How to Cite
D. Pérez-Marín and S. Tamayo-Moreno, “Designing Pedagogic Conversational Agents through Data Analysis”, TecnoL., vol. 23, no. 47, pp. 243-256, Jan. 2020.


Download data is not yet available.
Research Papers
Crossref Cited-by logo

Most read articles by the same author(s)